1,970 research outputs found

    Measures to increase airfield capacity by changing aircraft runway occupancy characteristics

    Get PDF
    Airfield capacity and aircraft runway occupancy characteristics were studied. Factors that caused runway congestion and airfield crowding were identified. Several innovations designed to alleviate the congestion are discussed. Integrated landing management, the concept that the operation of the final approach and runway should be considered in concert, was identified as underlying all of the innovations

    Electron heating at interplanetary shocks

    Get PDF
    Data for 41 forward interplanetary shocks show that the ratio of downstream to upstream electron temperatures. T sub e (d/u) is variable in the range between 1.0 (isothermal) and 3.0. On average, (T sub e (d/u) = 1.5 with a standard deviation, sigma e = 0.5. This ratio is less than the average ratio of proton temperatures across the same shocks, (T sub p (d/u)) = 3.3 with sigma p = 2.5 as well as the average ratio of electron temperatures across the Earth's bow shock. Individual samples of T sub e (d/u) and T sub p (d/u) appear to be weakly correlated with the number density ratio. However the amounts of electron and proton heating are well correlated with each other as well as with the bulk velocity difference across each shock. The stronger shocks appear to heat the protons more efficiently than they heat the electrons

    Can Streamer Blobs prevent the Buildup of the Interplanetetary Magnetic Field?

    Full text link
    Coronal Mass Ejections continuously drag closed magnetic field lines away from the Sun, adding new flux to the interplanetary magnetic field (IMF). We propose that the outward-moving blobs that have been observed in helmet streamers are evidence of ongoing, small-scale reconnection in streamer current sheets, which may play an important role in the prevention of an indefinite buildup of the IMF. Reconnection between two open field lines from both sides of a streamer current sheet creates a new closed field line, which becomes part of the helmet, and a disconnected field line, which moves outward. The blobs are formed by plasma from the streamer that is swept up in the trough of the outward moving field line. We show that this mechanism is supported by observations from SOHO/LASCO. Additionally, we propose a thorough statistical study to quantify the contribution of blob formation to the reduction of the IMF, and indicate how this mechanism may be verified by observations with SOHO/UVCS and the proposed NASA STEREO and ESA Polar Orbiter missions.Comment: 7 pages, 2 figures; accepted by The Astrophysical Journal Letters; uses AASTe

    On the Cause of Supra-Arcade Downflows in Solar Flares

    Get PDF
    A model of supra-arcade downflows (SADs), dark low density regions also known as tadpoles that propagate sunward during solar flares, is presented. It is argued that the regions of low density are flow channels carved by sunward-directed outflow jets from reconnection. The solar corona is stratified, so the flare site is populated by a lower density plasma than that in the underlying arcade. As the jets penetrate the arcade, they carve out regions of depleted plasma density which appear as SADs. The present interpretation differs from previous models in that reconnection is localized in space but not in time. Reconnection is continuous in time to explain why SADs are not filled in from behind as they would if they were caused by isolated descending flux tubes or the wakes behind them due to temporally bursty reconnection. Reconnection is localized in space because outflow jets in standard two-dimensional reconnection models expand in the normal (inflow) direction with distance from the reconnection site, which would not produce thin SADs as seen in observations. On the contrary, outflow jets in spatially localized three-dimensional reconnection with an out-of-plane (guide) magnetic field expand primarily in the out-of-plane direction and remain collimated in the normal direction, which is consistent with observed SADs being thin. Two-dimensional proof-of-principle simulations of reconnection with an out-of-plane (guide) magnetic field confirm the creation of SAD-like depletion regions and the necessity of density stratification. Three-dimensional simulations confirm that localized reconnection remains collimated.Comment: 16 pages, 5 figures, accepted to Astrophysical Journal Letters in August, 2013. This version is the accepted versio

    Plasma properties of driver gas following interplanetary shocks observed by ISEE-3

    Get PDF
    Plasma fluid parameters calculated from solar wind and magnetic field data obtained on ISEE 3 were studied. The characteristic properties of driver gas following interplanetary shocks was determined. Of 54 shocks observed from August 1978 to February 1980, nine contained a well defined driver gas that was clearly identifiable by a discontinuous decrease in the average proton temperature across a tangential discontinuity. While helium enhancements were present in all of nine of these events, only about half of them contained simultaneous changes in the two quantities. Often the He/H ratio changed over a period of minutes. Simultaneous with the drop in proton temperature the helium and electron temperature decreased abruptly. In some cases the proton temperature depression was accompanied by a moderate increase in magnetic field magnitude with an unusually low variance and by an increase in the ratio of parallel to perpendicular temperature. The drive gas usually displayed a bidirectional flow of suprathermal solar wind electrons at higher energies

    Magnetic Reconnection and Intermittent Turbulence in the Solar Wind

    Get PDF
    A statistical relationship between magnetic reconnection, current sheets and intermittent turbulence in the solar wind is reported for the first time using in-situ measurements from the Wind spacecraft at 1 AU. We identify intermittency as non-Gaussian fluctuations in increments of the magnetic field vector, B\mathbf{B}, that are spatially and temporally non-uniform. The reconnection events and current sheets are found to be concentrated in intervals of intermittent turbulence, identified using the partial variance of increments method: within the most non-Gaussian 1% of fluctuations in B\mathbf{B}, we find 87%-92% of reconnection exhausts and \sim9% of current sheets. Also, the likelihood that an identified current sheet will also correspond to a reconnection exhaust increases dramatically as the least intermittent fluctuations are removed from the dataset. Hence, the turbulent solar wind contains a hierarchy of intermittent magnetic field structures that are increasingly linked to current sheets, which in turn are progressively more likely to correspond to sites of magnetic reconnection. These results could have far reaching implications for laboratory and astrophysical plasmas where turbulence and magnetic reconnection are ubiquitous.Comment: 5 pages, 3 figures, submitted to Physical Review Letter

    A global assessment of the impact of climate change on water scarcity

    Get PDF
    This paper presents a global scale assessment of the impact of climate change on water scarcity. Patterns of climate change from 21 Global Climate Models (GCMs) under four SRES scenarios are applied to a global hydrological model to estimate water resources across 1339 watersheds. The Water Crowding Index (WCI) and the Water Stress Index (WSI) are used to calculate exposure to increases and decreases in global water scarcity due to climate change. 1.6 (WCI) and 2.4 (WSI) billion people are estimated to be currently living within watersheds exposed to water scarcity. Using the WCI, by 2050 under the A1B scenario, 0.5 to 3.1 billion people are exposed to an increase in water scarcity due to climate change (range across 21 GCMs). This represents a higher upper-estimate than previous assessments because scenarios are constructed from a wider range of GCMs. A substantial proportion of the uncertainty in the global-scale effect of climate change on water scarcity is due to uncertainty in the estimates for South Asia and East Asia. Sensitivity to the WCI and WSI thresholds that define water scarcity can be comparable to the sensitivity to climate change pattern. More of the world will see an increase in exposure to water scarcity than a decrease due to climate change but this is not consistent across all climate change patterns. Additionally, investigation of the effects of a set of prescribed global mean temperature change scenarios show rapid increases in water scarcity due to climate change across many regions of the globe, up to 2°C, followed by stabilisation to 4°C

    Optimising the balance between flexibility and structural mass for lower short- and long-term embodied carbon emissions in mass housing

    Get PDF
    The building construction industry is one of the largest contributors to global greenhouse gas emissions. One solution to reduce the industry's carbon footprint is to design structures efficiently, thus using less structural mass. However, over-designing is a fundamental aspect of flexibility; a building's capacity to make physical changes in the future – which is key for domestic buildings in particular. It is therefore important to strike a balance between structural efficiency and high flexibility, to limit both short- and long-term embodied carbon emissions. This balance was investigated using a mass housing case study, creating a series of design iterations to explore the trade-off between flexibility and structural mass. An optimum solution illustrated that this case study can be redesigned to have double the flexibility, lower structural mass, and less carbon-intensive materials. Therefore, this research concluded that it is possible to significantly reduce the short-term embodied carbon emissions of this housing design, whilst simultaneously reducing long-term emissions too. Although these findings might be specific to this case study, the duplicate nature of mass housing means that the carbon savings of this one housing design can be multiplied many times across a whole development. Applying this research to other mass housing designs could significantly reduce the embodied carbon of future developments and improve the carbon footprint of the building construction industry

    Drought at the global scale in the 2nd part of the 20th century (1963-2001)

    Get PDF
    The large impacts of drought on society, economy and environment urge for a thorough investigation. A good knowledge of past drought events is important for both understanding of the processes causing drought, as well as to provide reliability assessments for drought projections for the future. Preferably, the investigation of historic drought events should rely on observations. Unfortunately, for a global scale these detailed observations are often not available. Therefore, the outcome of global hydrological models (GHMs) and off-line land surface models (LSMs) is used to assess droughts. In this study we have investigated to what extent simulated gridded time series from these large-scale models capture historic hydrological drought events. Results of ten different models, both GHMs and LSMs, made available by the WATCH project, were compared. All models are run on a global 0.5 degree grid for the period 1963-2000 with the same meteorological forcing data (WATCH forcing data). To identify hydrological drought events, the monthly aggregated total runoff values were used. Different methods were developed to identify spatio-temporal drought characteristics. General drought characteristics for each grid cell, as for example the average drought duration, were compared. These characteristics show that when comparing absolute values the models give substantially different results, whereas relative values lead to more or less the same drought pattern. Next to the general drought characteristics, some documented major historical drought events (one for each continent) were selected and described in more detail. For each drought event, the simulated drought clusters (spatial events) and their characteristics are given for one month during the event. It can be concluded that most major drought events are captured by all models. However, the spatial extent of the drought events differ substantially between the models. In general the models show a fast reaction to rainfall and therefore also capture drought events caused by large rainfall anomalies. More research is still needed, since here we only looked at a few selected number of documented drought events spread over the globe. To assess more in detail if these large-scale models are able to capture drought, additional quantitative analyses are needed together with a more elaborated comparison against observed drought events

    Simulations of Electron Acceleration at Collisionless Shocks: The Effects of Surface Fluctuations

    Get PDF
    Energetic electrons are a common feature of interplanetary shocks and planetary bow shocks, and they are invoked as a key component of models of nonthermal radio emission, such as solar radio bursts. A simulation study is carried out of electron acceleration for high Mach number, quasi-perpendicular shocks, typical of the shocks in the solar wind. Two dimensional self-consistent hybrid shock simulations provide the electric and magnetic fields in which test particle electrons are followed. A range of different shock types, shock normal angles, and injection energies are studied. When the Mach number is low, or the simulation configuration suppresses fluctuations along the magnetic field direction, the results agree with theory assuming magnetic moment conserving reflection (or Fast Fermi acceleration), with electron energy gains of a factor only 2 - 3. For high Mach number, with a realistic simulation configuration, the shock front has a dynamic rippled character. The corresponding electron energization is radically different: Energy spectra display: (1) considerably higher maximum energies than Fast Fermi acceleration; (2) a plateau, or shallow sloped region, at intermediate energies 2 - 5 times the injection energy; (3) power law fall off with increasing energy, for both upstream and downstream particles, with a slope decreasing as the shock normal angle approaches perpendicular; (4) sustained flux levels over a broader region of shock normal angle than for adiabatic reflection. All these features are in good qualitative agreement with observations, and show that dynamic structure in the shock surface at ion scales produces effective scattering and can be responsible for making high Mach number shocks effective sites for electron acceleration.Comment: 26 pages, 12 figure
    corecore