20 research outputs found

    ChiPPI: a novel method for mapping chimeric protein–protein interactions uncovers selection principles of protein fusion events in cancer

    Get PDF
    Fusion proteins, comprising peptides deriving from the translation of two parental genes, are produced in cancer by chromosomal aberrations. The expressed fusion protein incorporates domains of both parental proteins. Using a methodology that treats discrete protein domains as binding sites for specific domains of interacting proteins, we have cataloged the protein interaction networks for 11 528 cancer fusions (ChiTaRS-3.1). Here, we present our novel method, chimeric protein–protein interactions (ChiPPI) that uses the domain–domain co-occurrence scores in order to identify preserved interactors of chimeric proteins. Mapping the influence of fusion proteins on cell metabolism and pathways reveals that ChiPPI networks often lose tumor suppressor proteins and gain oncoproteins. Furthermore, fusions often induce novel connections between non-interactors skewing interaction networks and signaling pathways. We compared fusion protein PPI networks in leukemia/lymphoma, sarcoma and solid tumors finding distinct enrichment patterns for each disease type. While certain pathways are enriched in all three diseases (Wnt, Notch and TGF ÎČ), there are distinct patterns for leukemia (EGFR signaling, DNA replication and CCKR signaling), for sarcoma (p53 pathway and CCKR signaling) and solid tumors (FGFR and EGFR signaling). Thus, the ChiPPI method represents a comprehensive tool for studying the anomaly of skewed cellular networks produced by fusion proteins in cancer.This work is funded by the Project Retos BFU2015-71241-R of the Spanish Ministry of Economy, Industry and Competitiveness (MEIC), co-funded by European Regional Development Fund (ERDF) and by the Project PT13/0001/0030, Instituto de Salud Carlos III (ISCIII), Strategic Action in Health, co-funded by European Regional Development Fund (ERDF). The work of MFM is supported by the Israel Cancer Association (ICA) fund, the work of ST is supported by the VaTaT Postdoctoral Fellowship for excellent students [22351, 20027, 26912]. AV is supported by the Joint BSC-CRG-IRB Programme in Computational Biology. Funding for open access charge: ICA [e-cancer-diagnosis].Peer ReviewedPostprint (published version

    Computational analysis of sense-antisense chimeric transcripts reveals their potential regulatory features and the landscape of expression in human cells

    Get PDF
    Many human genes are transcribed from both strands and produce sense-antisense gene pairs. Sense-antisense (SAS) chimeric transcripts are produced upon the coalescing of exons/introns from both sense and antisense transcripts of the same gene. SAS chimera was first reported in prostate cancer cells. Subsequently, numerous SAS chimeras have been reported in the ChiTaRS-2.1 database. However, the landscape of their expression in human cells and functional aspects are still unknown. We found that longer palindromic sequences are a unique feature of SAS chimeras. Structural analysis indicates that a long hairpin-like structure formed by many consecutive Watson-Crick base pairs appears because of these long palindromic sequences, which possibly play a similar role as double-stranded RNA (dsRNA), interfering with gene expression. RNA–RNA interaction analysis suggested that SAS chimeras could significantly interact with their parental mRNAs, indicating their potential regulatory features. Here, 267 SAS chimeras were mapped in RNA-seq data from 16 healthy human tissues, revealing their expression in normal cells. Evolutionary analysis suggested the positive selection favoring sense-antisense fusions that significantly impacted the evolution of their function and structure. Overall, our study provides detailed insight into the expression landscape of SAS chimeras in human cells and identifies potential regulatory features.Israeli Council for Higher Education [PBC Fellowship for Outstanding Post-Doctoral Fellows, 2019-2021 to S.M.]; Israel Innovation Authority [66824, 2019–2021 to M.F-M.]; RSF [18–14-00240 to Y.A.M. (in part)].Peer ReviewedPostprint (published version

    ChiTaRS 2.1--an improved database of the chimeric transcripts and RNA-seq data with novel sense-antisense chimeric RNA transcripts

    Get PDF
    Miguel Servet (FIS: CP11/00294) [to M.F.-M. for staff scientists]. Funding for open access charge: NHGRI-NIH ENCODE [HG00455-04]; Blueprint European Union project [282510]; Spanish Government [BIO2007-66855]; Spanish National Bioinformatics Institute (INB-ISCIII), Genecode/ENCODE NHGRI-NIH [HG00455-04].Chimeric RNAs that comprise two or more different transcripts have been identified in many cancers and among the Expressed Sequence Tags (ESTs) isolated from different organisms; they might represent functional proteins and produce different disease phenotypes. The ChiTaRS 2.1 database of chimeric transcripts and RNA-Seq data (http://chitars.bioinfo.cnio.es/) is the second version of the ChiTaRS database and includes improvements in content and functionality. Chimeras from eight organisms have been collated including novel sense-antisense (SAS) chimeras resulting from the slippage of the sense and anti-sense intragenic regions. The new database version collects more than 29,000 chimeric transcripts and indicates the expression and tissue specificity for 333 entries confirmed by RNA-seq reads mapping the chimeric junction sites. User interface allows for rapid and easy analysis of evolutionary conservation of fusions, literature references and experimental data supporting fusions in different organisms. More than 1428 cancer breakpoints have been automatically collected from public databases and manually verified to identify their correct cross-references, genomic sequences and junction sites. As a result, the ChiTaRS 2.1 collection of chimeras from eight organisms and human cancer breakpoints extends our understanding of the evolution of chimeric transcripts in eukaryotes as well as their functional role in carcinogenic processes.S

    ChiPPI: a novel method for mapping chimeric protein–protein interactions uncovers selection principles of protein fusion events in cancer

    No full text
    Fusion proteins, comprising peptides deriving from the translation of two parental genes, are produced in cancer by chromosomal aberrations. The expressed fusion protein incorporates domains of both parental proteins. Using a methodology that treats discrete protein domains as binding sites for specific domains of interacting proteins, we have cataloged the protein interaction networks for 11 528 cancer fusions (ChiTaRS-3.1). Here, we present our novel method, chimeric protein–protein interactions (ChiPPI) that uses the domain–domain co-occurrence scores in order to identify preserved interactors of chimeric proteins. Mapping the influence of fusion proteins on cell metabolism and pathways reveals that ChiPPI networks often lose tumor suppressor proteins and gain oncoproteins. Furthermore, fusions often induce novel connections between non-interactors skewing interaction networks and signaling pathways. We compared fusion protein PPI networks in leukemia/lymphoma, sarcoma and solid tumors finding distinct enrichment patterns for each disease type. While certain pathways are enriched in all three diseases (Wnt, Notch and TGF ÎČ), there are distinct patterns for leukemia (EGFR signaling, DNA replication and CCKR signaling), for sarcoma (p53 pathway and CCKR signaling) and solid tumors (FGFR and EGFR signaling). Thus, the ChiPPI method represents a comprehensive tool for studying the anomaly of skewed cellular networks produced by fusion proteins in cancer.This work is funded by the Project Retos BFU2015-71241-R of the Spanish Ministry of Economy, Industry and Competitiveness (MEIC), co-funded by European Regional Development Fund (ERDF) and by the Project PT13/0001/0030, Instituto de Salud Carlos III (ISCIII), Strategic Action in Health, co-funded by European Regional Development Fund (ERDF). The work of MFM is supported by the Israel Cancer Association (ICA) fund, the work of ST is supported by the VaTaT Postdoctoral Fellowship for excellent students [22351, 20027, 26912]. AV is supported by the Joint BSC-CRG-IRB Programme in Computational Biology. Funding for open access charge: ICA [e-cancer-diagnosis].Peer Reviewe

    The Association of Previous Vaccination with Live-Attenuated Varicella Zoster Vaccine and COVID-19 Positivity: An Israeli Population-Based Study

    No full text
    The Bacillus Calmette–GuĂ©rin (BCG) vaccine affords indirect protection against COVID-19, which is presumably due to priming of the innate immune system. It was hypothesized that the live attenuated Varicella Zoster (LAVZ) vaccine, recommended for the elderly population, would also protect against COVID-19 infection. A retrospective population-based cross-sectional study was conducted using the Leumit Health Services (LHS) database. LAVZ-vaccinated patients were matched with controls based on a propensity score model using 1:9 nearest-neighbor matching. Matching was based on age, gender, and the presence of some chronic disorders, which were selected according to their association with COVID-19 infection. Multivariate logistic regression analyses, adjusted for sex, age, smoking status, comorbidities, and chronic medications associated with COVID-19 risk, were used to estimate the association between LAVZ vaccination and COVID-19 RT-PCR results. Subjects (625) vaccinated with LAVZ and RT-PCR-tested for COVID-19 were identified. After 1:9 matching of subjects who received the LAVZ vaccine, 6250 subjects were included in the study. Multivariate logistic regression analysis demonstrated a significant and independent negative association between having received the LAVZ vaccine and the likelihood of COVID-19 infection (adjusted OR = 0.47 (95% CI 0.33–0.69, p < 0.001)). This association was further strengthened after separate analysis based on the time of LAVZ vaccination before COVID-19 RT-PCR testing. Individuals aged ≄50 years vaccinated with LAVZ had a decreased likelihood of being tested positive for COVID-19

    ChiTaRS: a database of human, mouse and fruit fly chimeric transcripts and RNA-sequencing data.

    Get PDF
    International audienceChimeric RNAs that comprise two or more different transcripts have been identified in many cancers and among the Expressed Sequence Tags (ESTs) isolated from different organisms; they might represent functional proteins and produce different disease phenotypes. The ChiTaRS database of Chimeric Transcripts and RNA-Sequencing data (http://chitars.bioinfo.cnio.es/) collects more than 16 000 chimeric RNAs from humans, mice and fruit flies, 233 chimeras confirmed by RNA-seq reads and ∌2000 cancer breakpoints. The database indicates the expression and tissue specificity of these chimeras, as confirmed by RNA-seq data, and it includes mass spectrometry results for some human entries at their junctions. Moreover, the database has advanced features to analyze junction consistency and to rank chimeras based on the evidence of repeated junction sites. Finally, 'Junction Search' screens through the RNA-seq reads found at the chimeras' junction sites to identify putative junctions in novel sequences entered by users. Thus, ChiTaRS is an extensive catalog of human, mouse and fruit fly chimeras that will extend our understanding of the evolution of chimeric transcripts in eukaryotes and can be advantageous in the analysis of human cancer breakpoints
    corecore