32 research outputs found

    Total Absorption Spectroscopy Study of 92^{92}Rb Decay: A Major Contributor to Reactor Antineutrino Spectrum Shape

    Full text link
    The antineutrino spectra measured in recent experiments at reactors are inconsistent with calculations based on the conversion of integral beta spectra recorded at the ILL reactor. 92^{92}Rb makes the dominant contribution to the reactor spectrum in the 5-8 MeV range but its decay properties are in question. We have studied 92^{92}Rb decay with total absorption spectroscopy. Previously unobserved beta feeding was seen in the 4.5-5.5 region and the GS to GS feeding was found to be 87.5(25)%. The impact on the reactor antineutrino spectra calculated with the summation method is shown and discussed.Comment: 6 pages, 3 figure

    Total absorption spectroscopy study of the beta decay of Br-86 and Rb-91

    Get PDF
    The beta decays of Br-86 and Rb-91 have been studied using the total absorption spectroscopy technique. The radioactive nuclei were produced at the Ion Guide Isotope Separator On-Line facility in Jyvaskyla and further purified using the JYFLTRAP. Br-86 and Rb-91 are considered to be major contributors to the decay heat in reactors. In addition, Rb-91 was used as a normalization point in direct measurements of mean gamma energies released in the beta decay of fission products by Rudstam et al. assuming that this decaywas well known from high-resolution measurements. Our results show that both decays were suffering from the Pandemonium effect and that the results of Rudstam et al. should be renormalized. The relative impact of the studied decays in the prediction of the decay heat and antineutrino spectrum from reactors has been evaluated.Peer reviewe

    β-delayed neutron emission studies

    No full text
    The study of β-delayed neutron emission plays a major role in different fields such as nuclear technology, nuclear astrophysics and nuclear structure. However the quality of the existing experimental data nowadays is not sufficient for the various technical and scientific applications and new high precision measurements are necessary to improve the data bases. One key aspect to the success of these high precission measurements is the use of a very pure ion beam that ensures that only the ion of interest is produced. The combination of the IGISOL mass separator with the JYFLTRAP Penning trap is an excellent tool for this type of measurement because of the ability to deliver isobarically and even isomerically clean beams. Another key feature of the installation is the non-chemical selectivity of the IGISOL ion source which allows measurements in the important region of refractory elements. This paper summarises the β-delayed neutron emission studies that have been carried out at the IGISOL facility with two different neutron detectors based on He counters in a polyethylene moderator: the Mainz neutron detector and the BEta deLayEd Neutron detector. © 2012 Springer Science+Business Media B.V

    β-delayed neutron emission studies

    No full text
    International audienceThe study of β-delayed neutron emission plays a major role in different fields such as nuclear technology, nuclear astrophysics and nuclear structure. However the quality of the existing experimental data nowadays is not sufficient for the various technical and scientific applications and new high precision measurements are necessary to improve the data bases. One key aspect to the success of these high precission measurements is the use of a very pure ion beam that ensures that only the ion of interest is produced. The combination of the IGISOL mass separator with the JYFLTRAP Penning trap is an excellent tool for this type of measurement because of the ability to deliver isobarically and even isomerically clean beams. Another key feature of the installation is the non-chemical selectivity of the IGISOL ion source which allows measurements in the important region of refractory elements. This paper summarises the β-delayed neutron emission studies that have been carried out at the IGISOL facility with two different neutron detectors based on 3He counters in a polyethylene moderator: the Mainz neutron detector and the BEta deLayEd Neutron detector

    Enhanced gamma-Ray Emission from Neutron Unbound States Populated in beta Decay

    No full text
    Total absorption spectroscopy is used to investigate the beta-decay intensity to states above the neutron separation energy followed by gamma-ray emission in Br-87,Br-88 and Rb-94. Accurate results are obtained thanks to a careful control of systematic errors. An unexpectedly large. intensity is observed in all three cases extending well beyond the excitation energy region where neutron penetration is hindered by low neutron energy. The gamma branching as a function of excitation energy is compared to Hauser-Feshbach model calculations. For Br-87 and Br-88 the gamma branching reaches 57% and 20%, respectively, and could be explained as a nuclear structure effect. Some of the states populated in the daughter can only decay through the emission of a large orbital angular momentum neutron with a strongly reduced barrier penetrability. In the case of neutron-rich Rb-94 the observed 4.5% branching is much larger than the calculations performed with standard nuclear statistical model parameters, even after proper correction for fluctuation effects on individual transition widths. The difference can be reconciled by introducing an enhancement of 1 order of magnitude in the photon strength to neutron strength ratio. An increase in the photon strength function of such magnitude for very neutron-rich nuclei, if it proves to be correct, leads to a similar increase in the (n, gamma) cross section that would have an impact on r process abundance calculation
    corecore