50 research outputs found

    Magnetogenesis in non-local models during inflation

    Full text link
    The generation of magnetic fields during inflation in an electromagnetic model with a non-local form factor in Maxwell`s action is studied. The equations of motion for the electromagnetic field are derived and solved. It is found that the conformal symmetry breaking due to the non-local form factor does not lead to the generation of magnetic fields during inflation in the absence of interaction with the inflaton field. If such a coupling takes place, then the presence of the form factor inhibits the generation of primordial magnetic fields compared to the case where the non-local form factor is absent.Comment: 7 page

    Induced vacuum energy density of quantum charged scalar matter in the background of an impenetrable magnetic tube with the Neumann boundary condition

    Full text link
    We consider vacuum polarization of charged scalar matter field outside the tube with magnetic flux inside. The tube is impenetrable for quantum matter and the perfectly rigid (Neumann) boundary condition is imposed at its surface. We write expressions for induced vacuum energy density for the case of a space of arbitrary dimension and for an arbitrary value of the magnetic flux. We do the numerical computation for the case of half-integer flux value in the London flux units and (2+1)-dimensional space-time. We show that the induced vacuum energy of the charged scalar matter field is induced if the Compton wavelength of the matter field exceeds the transverse size of the tube considerably. We show that vacuum energy is periodic in the value of the magnetic flux of the tube, providing a quantum-field-theoretical manifestation of the Aharonov-Bohm effect. The dependencies of the induced vacuum energy upon the distance from the center of the tube under the different values of its thickness were obtained. Obtained results are compared to the results obtained earlier in the case of the perfectly reflecting (Dirichlet) boundary condition. It is shown that the value of the induced vacuum energy density in the case of the Neumann boundary condition is greater than in the case of the Dirichlet boundary condition.Comment: 11 pages, 2 figure

    Semiclassical gravitational effects near a singular magnetic flux

    Get PDF
    We consider the backreaction of the vacuum polarization effect for a massive charged scalar field in the presence of a singular magnetic massless string on the background metric. Using semiclassical approach, we find the first-order (in ℏ\hbar units) metric modifications and the corresponding gravitational potential and deficit angle. It is shown that, in certain region of values of coupling constant and magnetic flux, the gravitational potential and deficit angle can be positive as well as negative over all distances from the string and can even change its sign. Unlike the case of massless scalar field, the gravitational corrections were found to have short-range behavior.Comment: 14 pages, 4 figures, journal versio

    ĐžŃ†Đ”ĐœĐșĐ° Ń‚Đ”Ń…ĐœĐŸĐ»ĐŸĐłĐžĐč зЎраĐČĐŸĐŸŃ…Ń€Đ°ĐœĐ”ĐœĐžŃ Đž ŃĐžŃŃ‚Đ”ĐŒĐ° лДĐșарстĐČĐ”ĐœĐœĐŸĐłĐŸ ĐČĐŸĐ·ĐŒĐ”Ń‰Đ”ĐœĐžŃ ĐČ Đ˜Ń‚Đ°Đ»ĐžĐž

    Get PDF
    The Italian healthcare system is historically structured by the difference in economic development between the northern and southern parts of this country. The Italian Medicines Agency (AIFA) is the national health technology assessment (HTA) authority in charge of the reimbursement and formulary-listing. Some regions have established their own HTA institutions to define the reimbursement policy for a specific region or organization. Because of that, the entire HTA system in Italy can be characterized by low inter-regional coherence and insufficient coordination. As a result, the access to medical services is not unified at the regional level; in addition, it is difficult to collect and analyze the data required for providing value-based healthcare. Although the cost-effectiveness of specific health technologies is taken into consideration for decision-making, in practice, the main focus rests on the budget impact and cost control. Along with that, the AIFA holds the leading positions in Europe in using such innovative approaches as the patient access schemes, early HTA and horizon scanning.СтруĐșтура ĐžŃ‚Đ°Đ»ŃŒŃĐœŃĐșĐŸĐč ŃĐžŃŃ‚Đ”ĐŒŃ‹ зЎраĐČĐŸĐŸŃ…Ń€Đ°ĐœĐ”ĐœĐžŃ ĐžŃŃ‚ĐŸŃ€ĐžŃ‡Đ”ŃĐșĐž ĐŸĐ±ŃƒŃĐ»ĐŸĐČĐ»Đ”ĐœĐ° Ń€Đ°Đ·ĐœĐžŃ†Đ”Đč ĐČ ŃĐșĐŸĐœĐŸĐŒĐžŃ‡Đ”ŃĐșĐŸĐŒ разĐČотоо ĐŒĐ”Đ¶ĐŽŃƒ сДĐČĐ”Ń€ĐœŃ‹ĐŒĐž Đž ŃŽĐ¶ĐœŃ‹ĐŒĐž Ń€Đ”ĐłĐžĐŸĐœĐ°ĐŒĐž ŃŃ‚Ń€Đ°ĐœŃ‹. ĐœĐ”ĐŽĐžŃ†ĐžĐœŃĐșĐŸĐ” Đ°ĐłĐ”ĐœŃ‚ŃŃ‚ĐČĐŸ Đ˜Ń‚Đ°Đ»ĐžĐž (Đ°ĐœĐłĐ». - TheItalianMedicinesAgency, Отал. - AgenziaItalianadelFarmaco, AIFA) яĐČĐ»ŃĐ”Ń‚ŃŃ ĐœĐ°Ń†ĐžĐŸĐœĐ°Đ»ŃŒĐœŃ‹ĐŒ Đ°ĐłĐ”ĐœŃ‚ŃŃ‚ĐČĐŸĐŒ ĐżĐŸ ĐŸŃ†Đ”ĐœĐșĐ” Ń‚Đ”Ń…ĐœĐŸĐ»ĐŸĐłĐžĐč зЎраĐČĐŸĐŸŃ…Ń€Đ°ĐœĐ”ĐœĐžŃ (ОбЗ), ĐŸŃ‚ĐČДтстĐČĐ”ĐœĐœŃ‹ĐŒ Đ·Đ° Ń€Đ”ŃˆĐ”ĐœĐžŃ ĐŸ ĐłĐŸŃŃƒĐŽĐ°Ń€ŃŃ‚ĐČĐ”ĐœĐœĐŸĐŒ ĐČĐŸĐ·ĐŒĐ”Ń‰Đ”ĐœĐžĐž ŃŃ‚ĐŸĐžĐŒĐŸŃŃ‚Đž лДĐșарстĐČĐ”ĐœĐœŃ‹Ń… ĐżŃ€Đ”ĐżĐ°Ń€Đ°Ń‚ĐŸĐČ Đž Ń„ĐŸŃ€ĐŒĐžŃ€ĐŸĐČĐ°ĐœĐžĐ” ĐœĐ°Ń†ĐžĐŸĐœĐ°Đ»ŃŒĐœĐŸĐłĐŸ ĐżĐ”Ń€Đ”Ń‡ĐœŃ ĐČĐŸĐ·ĐŒĐ”Ń‰Đ°Đ”ĐŒŃ‹Ń… ĐżŃ€Đ”ĐżĐ°Ń€Đ°Ń‚ĐŸĐČ. В ĐœĐ”ĐșĐŸŃ‚ĐŸŃ€Ń‹Ń… Ń€Đ”ĐłĐžĐŸĐœĐ°Ń… Đ˜Ń‚Đ°Đ»ĐžĐž ŃŃƒŃ‰Đ”ŃŃ‚ĐČуют ŃĐŸĐ±ŃŃ‚ĐČĐ”ĐœĐœŃ‹Đ” ОбЗ ŃƒŃ‡Ń€Đ”Đ¶ĐŽĐ”ĐœĐžŃ, ĐČ Ń„ŃƒĐœĐșцоо ĐșĐŸŃ‚ĐŸŃ€Ń‹Ń… ĐČŃ…ĐŸĐŽĐžŃ‚ ĐżŃ€ĐŸĐČĐ”ĐŽĐ”ĐœĐžĐ” ОбЗ ĐŽĐ»Ń ĐșĐŸĐœĐșŃ€Đ”Ń‚ĐœĐŸĐłĐŸ Ń€Đ”ĐłĐžĐŸĐœĐ° ОлО ŃƒŃ‡Ń€Đ”Đ¶ĐŽĐ”ĐœĐžŃ. В Ń†Đ”Đ»ĐŸĐŒ ŃĐžŃŃ‚Đ”ĐŒĐ° ОбЗ Đ˜Ń‚Đ°Đ»ĐžĐž хараĐșŃ‚Đ”Ń€ĐžĐ·ŃƒĐ”Ń‚ŃŃ ĐœĐ”ĐŽĐŸŃŃ‚Đ°Ń‚ĐŸŃ‡ĐœĐŸĐč ŃĐŸĐłĐ»Đ°ŃĐŸĐČĐ°ĐœĐœĐŸŃŃ‚ŃŒŃŽ ĐœĐ° ĐŒĐ”Đ¶Ń€Đ”ĐłĐžĐŸĐœĐ°Đ»ŃŒĐœĐŸĐŒ ŃƒŃ€ĐŸĐČĐœĐ” Оз-Đ·Đ° ĐœĐ”ĐŽĐŸŃŃ‚Đ°Ń‚ĐŸŃ‡ĐœĐŸĐč ŃƒĐœĐžŃ„ĐžĐșацоо ĐżŃ€ĐŸŃ†Đ”ŃŃĐŸĐČ Đž ĐșĐŸĐŸŃ€ĐŽĐžĐœĐ°Ń†ĐžĐž ĐœĐ° ĐœĐ°Ń†ĐžĐŸĐœĐ°Đ»ŃŒĐœĐŸĐŒ ŃƒŃ€ĐŸĐČĐœĐ”. Đ­Ń‚ĐŸ проĐČĐŸĐŽĐžŃ‚ Đș ĐœĐ”Ń€Đ°ĐČĐ”ĐœŃŃ‚ĐČу ĐŽĐŸŃŃ‚ŃƒĐżĐ° Đș ĐŒĐ”ĐŽĐžŃ†ĐžĐœŃĐșĐžĐŒ ŃƒŃĐ»ŃƒĐłĐ°ĐŒ Đž Ń‚Ń€ŃƒĐŽĐœĐŸŃŃ‚ŃĐŒ ĐČ ŃĐŸĐ·ĐŽĐ°ĐœĐžĐž ŃŃ„Ń„Đ”ĐșтоĐČĐœĐŸĐč ŃĐžŃŃ‚Đ”ĐŒŃ‹ ŃĐ±ĐŸŃ€Đ° Đž Đ°ĐœĐ°Đ»ĐžĐ·Đ° ĐŽĐ°ĐœĐœŃ‹Ń… ĐŽĐ»Ń праĐșтОчДсĐșĐŸĐłĐŸ ĐżŃ€ĐžĐŒĐ”ĐœŃŃ Ń†Đ”ĐœĐœĐŸŃŃ‚ĐœĐŸĐŸŃ€ĐžĐ”ĐœŃ‚ĐžŃ€ĐŸĐČĐ°ĐœĐœĐŸĐłĐŸ ĐżĐŸĐŽŃ…ĐŸĐŽĐ°. Đ„ĐŸŃ‚Ń ĐŸŃ€ĐłĐ°ĐœĐ°ĐŒĐž ОбЗ про ĐżŃ€ĐžĐœŃŃ‚ĐžĐž Ń€Đ”ŃˆĐ”ĐœĐžĐč учотыĐČĐ°Đ”Ń‚ŃŃ эĐșĐŸĐœĐŸĐŒĐžŃ‡Đ”ŃĐșая ŃŃ„Ń„Đ”ĐșтоĐČĐœĐŸŃŃ‚ŃŒ Ń‚Đ”Ń…ĐœĐŸĐ»ĐŸĐłĐžĐč зЎраĐČĐŸĐŸŃ…Ń€Đ°ĐœĐ”ĐœĐžŃ, ĐœĐ° праĐșтоĐșĐ” ĐŸŃĐœĐŸĐČĐœĐŸĐ” ĐČĐœĐžĐŒĐ°ĐœĐžĐ” ŃƒĐŽĐ”Đ»ŃĐ”Ń‚ŃŃ ĐČĐ»ĐžŃĐœĐžŃŽ ĐœĐ° бюЎжДт Đž ĐșĐŸĐœŃ‚Ń€ĐŸĐ»ŃŽ затрат. йаĐșжД ĐŒĐŸĐ¶ĐœĐŸ ĐŸŃ‚ĐŒĐ”Ń‚ĐžŃ‚ŃŒ, Ń‡Ń‚ĐŸ AIFA Đ·Đ°ĐœĐžĐŒĐ°Đ”Ń‚ Đ»ĐžĐŽĐžŃ€ŃƒŃŽŃ‰ĐžĐ” ĐżĐŸĐ·ĐžŃ†ĐžĐž ĐČ Đ•ĐČŃ€ĐŸĐżĐ” ĐČ ĐżŃ€ĐžĐŒĐ”ĐœĐ”ĐœĐžĐž таĐșох ĐžĐœĐœĐŸĐČĐ°Ń†ĐžĐŸĐœĐœŃ‹Ń… ĐżĐŸĐŽŃ…ĐŸĐŽĐŸĐČ, ĐșĐ°Đș ŃĐŸĐłĐ»Đ°ŃˆĐ”ĐœĐžŃ ĐŸ Ń€Đ°Đ·ĐŽĐ”Đ»Đ”ĐœĐžŃ росĐșĐŸĐČ Đž затрат, Ń€Đ°ĐœĐœŃŃ ОбЗ Đž сĐșĐ°ĐœĐžŃ€ĐŸĐČĐ°ĐœĐžĐ” ĐłĐŸŃ€ĐžĐ·ĐŸĐœŃ‚Đ°

    Đ Đ”Đ°Đ»ŃŒĐœĐ°Ń ĐșĐ»ĐžĐœĐžŃ‡Đ”ŃĐșая праĐșтоĐșĐ°: ĐżŃ€ĐžĐœŃ†ĐžĐżŃ‹ ĐžŃĐżĐŸĐ»ŃŒĐ·ĐŸĐČĐ°ĐœĐžŃ ĐČ ĐżŃ€ĐžĐœŃŃ‚ĐžĐž упраĐČĐ»Đ”ĐœŃ‡Đ”ŃĐșох Ń€Đ”ŃˆĐ”ĐœĐžĐč Đž ĐŸŃ†Đ”ĐœĐșĐ” Ń‚Đ”Ń…ĐœĐŸĐ»ĐŸĐłĐžĐč зЎраĐČĐŸĐŸŃ…Ń€Đ°ĐœĐ”ĐœĐžŃ

    Get PDF
    The use of real-world data (RWD) and real-world evidence (RWE) in process of improving public health, their assessment, and use in decision making is a promising area. Discussions are actively underway about the possibility of using RWD and RWE in routine medical practice of doctors and health care organizers, the weaknesses of these matters and ways to overcome them. Taking into account the considerable amount of information, complexity, and inconsistency of issues under consideration, the article presents the basic principles of using RWD and RWE in decision making, classification of health technologies values, classification of RWE sources, position of RWD studies in the hierarchy of clinical study designs, as well as the ways of their use in complex drug assessment.Đ˜ŃĐżĐŸĐ»ŃŒĐ·ĐŸĐČĐ°ĐœĐžĐ” ĐŽĐ°ĐœĐœŃ‹Ń… Đž ĐŽĐŸĐșĐ°Đ·Đ°Ń‚Đ”Đ»ŃŒŃŃ‚ĐČ Ń€Đ”Đ°Đ»ŃŒĐœĐŸĐč ĐșĐ»ĐžĐœĐžŃ‡Đ”ŃĐșĐŸĐč праĐșтоĐșĐž (РКП) про ĐżĐŸĐŽĐłĐŸŃ‚ĐŸĐČĐșĐ” ĐżŃ€Đ”ĐŽĐ»ĐŸĐ¶Đ”ĐœĐžĐč ĐżĐŸ ŃĐŸĐČĐ”Ń€ŃˆĐ”ĐœŃŃ‚ĐČĐŸĐČĐ°ĐœĐžŃŽ ŃĐžŃŃ‚Đ”ĐŒŃ‹ зЎраĐČĐŸĐŸŃ…Ń€Đ°ĐœĐ”ĐœĐžŃ, ох ĐŸŃ†Đ”ĐœĐșĐ” Đž ĐżĐŸŃĐ»Đ”ĐŽŃƒŃŽŃ‰Đ”ĐŒ ĐżŃ€ĐžĐœŃŃ‚ĐžĐž ĐœĐ° ох ĐŸŃĐœĐŸĐČĐ” упраĐČĐ»Đ”ĐœŃ‡Đ”ŃĐșох Ń€Đ”ŃˆĐ”ĐœĐžĐč яĐČĐ»ŃĐ”Ń‚ŃŃ пДрспДĐșтоĐČĐœŃ‹ĐŒ Đž Đ°ĐșŃ‚ŃƒĐ°Đ»ŃŒĐœŃ‹ĐŒ ĐœĐ°ĐżŃ€Đ°ĐČĐ»Đ”ĐœĐžĐ”ĐŒ. АĐșтоĐČĐœĐŸ ĐČĐ”ĐŽŃƒŃ‚ŃŃ ЎОсĐșуссОО ĐŸ ĐČĐŸĐ·ĐŒĐŸĐ¶ĐœĐŸŃŃ‚Đž ĐżŃ€ĐžĐŒĐ”ĐœĐ”ĐœĐžŃ ĐČ ĐżŃ€Đ°ĐșтОчДсĐșĐŸĐč ĐŽĐ”ŃŃ‚Đ”Đ»ŃŒĐœĐŸŃŃ‚Đž ĐČрачДĐč Đž ĐŸŃ€ĐłĐ°ĐœĐžĐ·Đ°Ń‚ĐŸŃ€ĐŸĐČ Đ·ĐŽŃ€Đ°ĐČĐŸĐŸŃ…Ń€Đ°ĐœĐ”ĐœĐžŃ ĐŽĐ°ĐœĐœŃ‹Ń… Đž ĐŽĐŸĐșĐ°Đ·Đ°Ń‚Đ”Đ»ŃŒŃŃ‚ĐČ Đ ĐšĐŸ, ĐŸ слабых ŃŃ‚ĐŸŃ€ĐŸĐœĐ°Ń… этох ĐŽĐ°ĐœĐœŃ‹Ń… Đž путях ох ĐżŃ€Đ”ĐŸĐŽĐŸĐ»Đ”ĐœĐžŃ. УчотыĐČая Đ·ĐœĐ°Ń‡ĐžŃ‚Đ”Đ»ŃŒĐœŃ‹Đč ĐŸĐ±ŃŠĐ”ĐŒ ĐžĐœŃ„ĐŸŃ€ĐŒĐ°Ń†ĐžĐž, ĐșĐŸĐŒĐżĐ»Đ”ĐșŃĐœĐŸŃŃ‚ŃŒ Đž ĐżŃ€ĐŸŃ‚ĐžĐČĐŸŃ€Đ”Ń‡ĐžĐČĐŸŃŃ‚ŃŒ Ń€Đ°ŃŃĐŒĐ°Ń‚Ń€ĐžĐČĐ°Đ”ĐŒĐŸĐłĐŸ ĐČĐŸĐżŃ€ĐŸŃĐ°, ĐČ ŃŃ‚Đ°Ń‚ŃŒĐ” проĐČĐ”ĐŽĐ”ĐœŃ‹ ĐŸŃĐœĐŸĐČĐœŃ‹Đ” ĐżŃ€ĐžĐœŃ†ĐžĐżŃ‹ ĐžŃĐżĐŸĐ»ŃŒĐ·ĐŸĐČĐ°ĐœĐžŃ ĐŽĐ°ĐœĐœŃ‹Ń… Đž ĐŽĐŸĐșĐ°Đ·Đ°Ń‚Đ”Đ»ŃŒŃŃ‚ĐČ Đ ĐšĐŸ про ĐżŃ€ĐžĐœŃŃ‚ĐžĐž упраĐČĐ»Đ”ĐœŃ‡Đ”ŃĐșох Ń€Đ”ŃˆĐ”ĐœĐžĐč ĐČ Đ·ĐŽŃ€Đ°ĐČĐŸĐŸŃ…Ń€Đ°ĐœĐ”ĐœĐžĐž, ĐșлассОфОĐșацоя ĐČĐžĐŽĐŸĐČ Ń†Đ”ĐœĐœĐŸŃŃ‚Đž ĐŒĐ”ĐŽĐžŃ†ĐžĐœŃĐșох Ń‚Đ”Ń…ĐœĐŸĐ»ĐŸĐłĐžĐč, ĐșлассОфОĐșацоя ĐžŃŃ‚ĐŸŃ‡ĐœĐžĐșĐŸĐČ ĐŽĐŸĐșĐ°Đ·Đ°Ń‚Đ”Đ»ŃŒŃŃ‚ĐČ, ĐŸŃĐœĐŸĐČĐ°ĐœĐœŃ‹Ń… ĐœĐ° ĐŽĐ°ĐœĐœŃ‹Ń… РКП, ĐżĐŸĐ»ĐŸĐ¶Đ”ĐœĐžĐ” ĐžŃŃĐ»Đ”ĐŽĐŸĐČĐ°ĐœĐžĐč РКП ĐČ ĐžĐ”Ń€Đ°Ń€Ń…ĐžĐž ЎОзаĐčĐœĐŸĐČ ĐșĐ»ĐžĐœĐžŃ‡Đ”ŃĐșох ĐžŃŃĐ»Đ”ĐŽĐŸĐČĐ°ĐœĐžĐč, Đ° таĐșжД ĐČĐŸĐ·ĐŒĐŸĐ¶ĐœĐŸŃŃ‚Đž ох ĐżŃ€ĐžĐŒĐ”ĐœĐ”ĐœĐžŃ ĐČ ĐșĐŸĐŒĐżĐ»Đ”ĐșŃĐœĐŸĐč ĐŸŃ†Đ”ĐœĐșĐ” лДĐșарстĐČĐ”ĐœĐœŃ‹Ń… ĐżŃ€Đ”ĐżĐ°Ń€Đ°Ń‚ĐŸĐČ

    ĐšĐ»ĐžĐœĐžĐșĐŸ-эĐșĐŸĐœĐŸĐŒĐžŃ‡Đ”ŃĐșĐžĐč Đ°ĐœĐ°Đ»ĐžĐ· Đž ĐŸŃ†Đ”ĐœĐșĐ° ĐČĐ»ĐžŃĐœĐžŃ ĐœĐ° бюЎжДт ĐżŃ€ĐžĐŒĐ”ĐœĐ”ĐœĐžŃ ĐžĐŒĐżĐ»Đ°ĐœŃ‚ĐžŃ€ŃƒĐ”ĐŒŃ‹Ń… ĐșĐ°Ń€ĐŽĐžĐŸĐČĐ”Ń€Ń‚Đ”Ń€ĐŸĐČ-ĐŽĐ”Ń„ĐžĐ±Ń€ĐžĐ»Đ»ŃŃ‚ĐŸŃ€ĐŸĐČ ĐČ Đ ĐŸŃŃĐžĐčсĐșĐŸĐč ЀДЎДрацОО

    Get PDF
    Objective: to evaluate cost-effectiveness and budget impact of using single and dual chamber implantable cardioverter-defibrillators (ICD) adjunctive to the standard drug therapy (DT) compared to the standard DT alone for the primary and secondary prevention of sudden cardiac death (SCD).Material and methods. Original partitioned survival analysis model was developed to assess the cost-effectiveness of using ICD within the modelling horizon of 8 years. The following model outcomes were used: life years and quality-adjusted life years (QALY). Primary prevention model was focused on patients after myocardial infarction with left ventricular ejection fraction (LVEF) ≀30%, whilst secondary prevention model considered cardiac arrest survivors and/or patients diagnosed with ventricular tachycardia or ventricular fibrillation with LVEF ≀35%. The model summarizes treatment effect and costs for ICD and DT specific to the healthcare system of the Russian Federation (RF). The main scenario accounted for ICD implantation cost in accordance with general reimbursement price asserted in the high technology medical care list part 2 (HĐąMC 2). Additionally, alternative scenario of ICD reimbursement level was developed to account for general tariff split onto singleand dual-chamber ICD implantation reimbursement tariffs which can be financed through high technology medical care list part 1 (HĐąMC 1). Budget impact analysis compared the costs of using ICD within the current volume of the annual increase in ICD implantations and a threefold increased volume of ICD implantations.Results. By the end of the modelling period, additional 34% of patients survived in the ICD group compared to the DT group. Incremental cost-effectiveness ratio (ICER) per 1 QALY constituted 2.8 and 2.2 million rubles for primary and secondary prevention, respectively. ICER values are slightly above or lower than the willingness-to-pay threshold of 2.5 million rubles per 1 QALY in the RF in the segment of primary and secondary SCD prevention, respectively. Additional HĐąMC 1 scenario incorporating lower ICD implantation prices resulted in an average ICER drop by 13% compared to HTMC 2. Overall patient population requiring SCD prevention comprised of 7,161 and 3,341 patients in primary and secondary prevention, respectively. Budget impact analysis showed that threefold rise in the ICD implantations rate will require additional 648 million rubles for primary prevention cohort to provide additional 573 patients with ICD, and 230 million rubles for secondary prevention cohort with additional 267 patients covered with ICD. ICD reimbursement price drop within the HĐąMC 1 scenario will save 133 million rubles and allow to provide additional 143 patients with ICDs for a given budget.Conclusion. ICD is a cost-effective option of secondary prevention of SCD. Additional analysis of ICD reimbursement price drop drives ICER downwards to a considerable extent which in turn increases the accessibility of ICDs to patients. In scenario of ICD implantation financing within HĐąMC 1, ICD is established to be a cost-effective option for primary and secondary prevention of SCD in the RF.ĐŠĐ”Đ»ŃŒ: ĐŸŃ†Đ”ĐœĐșĐ° ĐșĐ»ĐžĐœĐžĐșĐŸ-эĐșĐŸĐœĐŸĐŒĐžŃ‡Đ”ŃĐșĐŸĐč ŃŃ„Ń„Đ”ĐșтоĐČĐœĐŸŃŃ‚Đž Đž Đ°ĐœĐ°Đ»ĐžĐ· ĐČĐ»ĐžŃĐœĐžŃ ĐœĐ° бюЎжДт (АВБ) ĐżŃ€ĐžĐŒĐ”ĐœĐ”ĐœĐžŃ ĐŸĐŽĐœĐŸ- Đž ĐŽĐČухĐșĐ°ĐŒĐ”Ń€ĐœŃ‹Ń… ĐžĐŒĐżĐ»Đ°ĐœŃ‚ĐžŃ€ŃƒĐ”ĐŒŃ‹Ń… ĐșĐ°Ń€ĐŽĐžĐŸĐČĐ”Ń€Ń‚Đ”Ń€ĐŸĐČ-ĐŽĐ”Ń„ĐžĐ±Ń€ĐžĐ»Đ»ŃŃ‚ĐŸŃ€ĐŸĐČ (ИКД) ĐČ ŃĐŸŃ‡Đ”Ń‚Đ°ĐœĐžĐž ŃĐŸ ŃŃ‚Đ°ĐœĐŽĐ°Ń€Ń‚ĐœĐŸĐč лДĐșарстĐČĐ”ĐœĐœĐŸĐč тДрапОДĐč (Лб) ĐżĐŸ сраĐČĐœĐ”ĐœĐžŃŽ ŃĐŸ ŃŃ‚Đ°ĐœĐŽĐ°Ń€Ń‚ĐœĐŸĐč Лб ĐŽĐ»Ń пДрĐČĐžŃ‡ĐœĐŸĐč Đž ĐČŃ‚ĐŸŃ€ĐžŃ‡ĐœĐŸĐč ĐżŃ€ĐŸŃ„ĐžĐ»Đ°ĐșтоĐșĐž ĐČĐœĐ”Đ·Đ°ĐżĐœĐŸĐč ŃĐ”Ń€ĐŽĐ”Ń‡ĐœĐŸĐč ŃĐŒĐ”Ń€Ń‚Đž (ВСС).ĐœĐ°Ń‚Đ”Ń€ĐžĐ°Đ» Đž ĐŒĐ”Ń‚ĐŸĐŽŃ‹. ĐŸĐŸŃŃ‚Ń€ĐŸĐ”ĐœĐ° ĐŸŃ€ĐžĐłĐžĐœĐ°Đ»ŃŒĐœĐ°Ń ĐŒĐŸĐŽĐ”Đ»ŃŒ Ń€Đ°ŃĐżŃ€Đ”ĐŽĐ”Đ»Đ”ĐœĐœĐŸĐč ĐČыжОĐČĐ°Đ”ĐŒĐŸŃŃ‚Đž ĐżĐ°Ń†ĐžĐ”ĐœŃ‚ĐŸĐČ Ń росĐșĐŸĐŒ ВСС ĐŽĐ»Ń ĐżŃ€ĐŸĐČĐ”ĐŽĐ”ĐœĐžŃ Đ°ĐœĐ°Đ»ĐžĐ·Đ° Â«Đ·Đ°Ń‚Ń€Đ°Ń‚Ń‹â€“ŃŃ„Ń„Đ”ĐșтоĐČĐœĐŸŃŃ‚ŃŒÂ» с ĐłĐŸŃ€ĐžĐ·ĐŸĐœŃ‚ĐŸĐŒ ĐŒĐŸĐŽĐ”Đ»ĐžŃ€ĐŸĐČĐ°ĐœĐžŃ 8 лДт. В ĐșачДстĐČĐ” ĐžŃŃ…ĐŸĐŽĐŸĐČ ĐŒĐŸĐŽĐ”Đ»Đž былО ĐžŃĐżĐŸĐ»ŃŒĐ·ĐŸĐČĐ°ĐœŃ‹ ĐłĐŸĐŽŃ‹ Đ¶ĐžĐ·ĐœĐž Đž ĐłĐŸĐŽŃ‹ Đ¶ĐžĐ·ĐœĐž с ĐżĐŸĐżŃ€Đ°ĐČĐșĐŸĐč ĐœĐ° ĐșачДстĐČĐŸ (Đ°ĐœĐłĐ». quality-adjusted life year, QALY). ĐœĐŸĐŽĐ”Đ»ŃŒ пДрĐČĐžŃ‡ĐœĐŸĐč ĐżŃ€ĐŸŃ„ĐžĐ»Đ°ĐșтоĐșĐž ВСС ĐČĐșлючала ĐżĐ°Ń†ĐžĐ”ĐœŃ‚ĐŸĐČ ĐżĐŸŃĐ»Đ” ĐžĐœŃ„Đ°Ń€Đșта ĐŒĐžĐŸĐșарЮа с фраĐșцОДĐč ĐČŃ‹Đ±Ń€ĐŸŃĐ° лДĐČĐŸĐłĐŸ Đ¶Đ”Đ»ŃƒĐŽĐŸŃ‡ĐșĐ° (ЀВЛЖ) 30% Đž ĐŒĐ”ĐœĐ”Đ”, ĐŒĐŸĐŽĐ”Đ»ŃŒ ĐČŃ‚ĐŸŃ€ĐžŃ‡ĐœĐŸĐč ĐżŃ€ĐŸŃ„ĐžĐ»Đ°ĐșтоĐșĐž ВСС – Đ±ĐŸĐ»ŃŒĐœŃ‹Ń… ĐżĐŸŃĐ»Đ” ĐŸŃŃ‚Đ°ĐœĐŸĐČĐșĐž сДрЎца Đž/ОлО ĐžĐŒĐ”ŃŽŃ‰ĐžŃ… Đ¶Đ”Đ»ŃƒĐŽĐŸŃ‡ĐșĐŸĐČую тахоĐșарЮою ОлО Ń„ĐžĐ±Ń€ĐžĐ»Đ»ŃŃ†ĐžŃŽ Đ¶Đ”Đ»ŃƒĐŽĐŸŃ‡ĐșĐŸĐČ Ń ЀВЛЖ 35% Đž ĐŒĐ”ĐœĐ”Đ”. ĐœĐŸĐŽĐ”Đ»ŃŒ ĐżĐŸĐ·ĐČĐŸĐ»ŃĐ”Ń‚ ĐżŃ€ĐŸĐłĐœĐŸĐ·ĐžŃ€ĐŸĐČать затраты ĐœĐ° Đ»Đ”Ń‡Đ”ĐœĐžĐ” Đž ĐžŃŃ…ĐŸĐŽŃ‹ ĐżĐ°Ń†ĐžĐ”ĐœŃ‚ĐŸĐČ, ĐžŃĐżĐŸĐ»ŃŒĐ·ŃƒŃŽŃ‰ĐžŃ… ИКД ОлО Лб ĐČ ŃƒŃĐ»ĐŸĐČоях ŃĐžŃŃ‚Đ”ĐŒŃ‹ зЎраĐČĐŸĐŸŃ…Ń€Đ°ĐœĐ”ĐœĐžŃ Đ ĐŸŃŃĐžĐčсĐșĐŸĐč ЀДЎДрацОО (РЀ). ĐžŃĐœĐŸĐČĐœĐŸĐč ŃŃ†Đ”ĐœĐ°Ń€ĐžĐč учотыĐČаДт ŃŃ‚ĐŸĐžĐŒĐŸŃŃ‚ŃŒ ĐžĐŒĐżĐ»Đ°ĐœŃ‚Đ°Ń†ĐžĐž ĐżŃ€ĐžĐ±ĐŸŃ€Đ° ĐżĐŸ Đ”ĐŽĐžĐœĐŸĐŒŃƒ тарофу ĐŽĐ»Ń ĐČсДх Ń‚ĐžĐżĐŸĐČ Đ˜ĐšĐ” ĐČ Ń€Đ°ĐŒĐșах ĐČŃ‚ĐŸŃ€ĐŸĐłĐŸ ĐżĐ”Ń€Đ”Ń‡ĐœŃ ĐČŃ‹ŃĐŸĐșĐŸŃ‚Đ”Ń…ĐœĐŸĐ»ĐŸĐłĐžŃ‡ĐœĐŸĐč ĐŒĐ”ĐŽĐžŃ†ĐžĐœŃĐșĐŸĐč ĐżĐŸĐŒĐŸŃ‰Đž (ВМП 2). Đ”ĐŸĐżĐŸĐ»ĐœĐžŃ‚Đ”Đ»ŃŒĐœĐŸ ĐŒĐŸĐŽĐ”Đ»ĐžŃ€ĐŸĐČалО ŃŃ†Đ”ĐœĐ°Ń€ĐžĐč ŃĐŸ ŃĐœĐžĐ¶Đ”ĐœĐžĐ”ĐŒ тарофа ĐœĐ° ĐžĐŒĐżĐ»Đ°ĐœŃ‚Đ°Ń†ĐžŃŽ ИКД Đ·Đ° счДт Ń€Đ°Đ·ĐłŃ€ŃƒĐżĐżĐžŃ€ĐŸĐČĐșĐž ŃŃƒŃ‰Đ”ŃŃ‚ĐČŃƒŃŽŃ‰Đ”ĐłĐŸ Đ”ĐŽĐžĐœĐŸĐłĐŸ тарофа ĐœĐ° ĐŽĐČĐ°: ĐŽĐ»Ń ĐŸĐŽĐœĐŸĐž ĐŽĐČухĐșĐ°ĐŒĐ”Ń€ĐœŃ‹Ń… ИКД ĐČ ĐŸŃ‚ĐŽĐ”Đ»ŃŒĐœĐŸŃŃ‚Đž ĐČ Ń€Đ°ĐŒĐșах пДрĐČĐŸĐłĐŸ ĐżĐ”Ń€Đ”Ń‡ĐœŃ ВМП (ВМП 1). ĐĄ ĐżĐŸĐŒĐŸŃ‰ŃŒŃŽ АВБ сраĐČĐœĐžĐČалО затраты ĐœĐ° ĐžŃĐżĐŸĐ»ŃŒĐ·ĐŸĐČĐ°ĐœĐžĐ” ИКД ĐČ Ń€Đ°ĐŒĐșах Ń‚Đ”ĐșŃƒŃ‰Đ”ĐłĐŸ ĐŸĐ±ŃŠĐ”ĐŒĐ° Đ”Đ¶Đ”ĐłĐŸĐŽĐœĐŸĐłĐŸ ĐżŃ€ĐžŃ€ĐŸŃŃ‚Đ° ĐžĐŒĐżĐ»Đ°ĐœŃ‚Đ°Ń†ĐžĐč ИКД Đž ĐżĐŸĐČŃ‹ŃˆĐ”ĐœĐœĐŸĐłĐŸ (трДхĐșŃ€Đ°Ń‚ĐœĐŸĐłĐŸ) ĐŸĐ±ŃŠĐ”ĐŒĐ° ĐżŃ€ĐžŃ€ĐŸŃŃ‚Đ°.Đ Đ”Đ·ŃƒĐ»ŃŒŃ‚Đ°Ń‚Ń‹. На ĐșĐŸĐœĐ”Ń† ĐłĐŸŃ€ĐžĐ·ĐŸĐœŃ‚Đ° ĐŒĐŸĐŽĐ”Đ»ĐžŃ€ĐŸĐČĐ°ĐœĐžŃ ĐŽĐŸĐżĐŸĐ»ĐœĐžŃ‚Đ”Đ»ŃŒĐœŃ‹Đč ĐżŃ€ĐžŃ€ĐŸŃŃ‚ ĐČыжОĐČĐ°Đ”ĐŒĐŸŃŃ‚Đž ĐČ ĐłŃ€ŃƒĐżĐżĐ” ИКД ĐżĐŸ сраĐČĐœĐ”ĐœĐžŃŽ с ĐłŃ€ŃƒĐżĐżĐŸĐč Лб ŃĐŸŃŃ‚Đ°ĐČОл 34%. Đ˜ĐœĐșŃ€Đ”ĐŒĐ”ĐœŃ‚Đ°Đ»ŃŒĐœŃ‹Đč ĐżĐŸĐșĐ°Đ·Đ°Ń‚Đ”Đ»ŃŒ Â«Đ·Đ°Ń‚Ń€Đ°Ń‚Ń‹â€“ŃŃ„Ń„Đ”ĐșтоĐČĐœĐŸŃŃ‚ŃŒÂ» (Đ°ĐœĐłĐ». incremental cost-effectiveness ratio, ICER) Đ·Đ° 1 QALY ĐČ ĐŸŃĐœĐŸĐČĐœĐŸĐŒ ŃŃ†Đ”ĐœĐ°Ń€ĐžĐž ŃĐŸŃŃ‚Đ°ĐČОл 2,8 Đž 2,2 ĐŒĐ»Đœ Ń€ŃƒĐ±. ĐČ ŃĐ”ĐłĐŒĐ”ĐœŃ‚Đ°Ń… пДрĐČĐžŃ‡ĐœĐŸĐč Đž ĐČŃ‚ĐŸŃ€ĐžŃ‡ĐœĐŸĐč ĐżŃ€ĐŸŃ„ĐžĐ»Đ°ĐșтоĐșĐž ВСС ŃĐŸĐŸŃ‚ĐČДтстĐČĐ”ĐœĐœĐŸ. ĐŸĐŸĐ»ŃƒŃ‡Đ”ĐœĐœĐŸĐ” Đ·ĐœĐ°Ń‡Đ”ĐœĐžĐ” ĐżĐŸ пДрĐČĐžŃ‡ĐœĐŸĐč ĐżŃ€ĐŸŃ„ĐžĐ»Đ°ĐșтоĐșĐ” ĐœĐ”Đ·ĐœĐ°Ń‡ĐžŃ‚Đ”Đ»ŃŒĐœĐŸ прДĐČŃ‹ŃˆĐ°Đ”Ń‚, Đ° ĐżĐŸ ĐČŃ‚ĐŸŃ€ĐžŃ‡ĐœĐŸĐč ĐżŃ€ĐŸŃ„ĐžĐ»Đ°ĐșтоĐșĐ” ĐœĐ°Ń…ĐŸĐŽĐžŃ‚ŃŃ ĐœĐžĐ¶Đ” Ń€Đ”Ń„Đ”Ń€Đ”ĐœŃ‚ĐœĐŸĐłĐŸ Đ·ĐœĐ°Ń‡Đ”ĐœĐžŃ ICER (ĐżĐŸŃ€ĐŸĐłĐ° ĐłĐŸŃ‚ĐŸĐČĐœĐŸŃŃ‚Đž ĐżĐ»Đ°Ń‚ĐžŃ‚ŃŒ), ŃĐŸŃŃ‚Đ°ĐČĐ»ŃŃŽŃ‰Đ”ĐłĐŸ ĐČ Đ Đ€ 2,5 ĐŒĐ»Đœ Ń€ŃƒĐ±. Đ·Đ° 1 QALY. ĐœĐŸĐŽĐ”Đ»ĐžŃ€ŃƒĐ”ĐŒĐŸĐ” ŃĐœĐžĐ¶Đ”ĐœĐžĐ” ŃŃ‚ĐŸĐžĐŒĐŸŃŃ‚Đž тарофа ĐœĐ° ŃƒŃŃ‚Đ°ĐœĐŸĐČĐșу ИКД ĐČ Ń€Đ°ĐŒĐșах ĐżĐ”Ń€Đ”Ń‡ĐœŃ ВМП 1 ŃƒĐ»ŃƒŃ‡ŃˆĐ°Đ”Ń‚ Đ·Đ°Ń‚Ń€Đ°Ń‚ĐœŃƒŃŽ ŃŃ„Ń„Đ”ĐșтоĐČĐœĐŸŃŃ‚ŃŒ (ŃĐœĐžĐ¶Đ°Đ”Ń‚ ICER) ĐČ ŃŃ€Đ”ĐŽĐœĐ”ĐŒ ĐœĐ° 13% ĐŸŃ‚ ŃŃ†Đ”ĐœĐ°Ń€ĐžŃ ВМП 2. ĐĄŃƒĐŒĐŒĐ°Ń€ĐœĐ°Ń ĐżĐŸĐżŃƒĐ»ŃŃ†ĐžŃ ĐżĐ°Ń†ĐžĐ”ĐœŃ‚ĐŸĐČ, ĐœŃƒĐ¶ĐŽĐ°ŃŽŃ‰ĐžŃ…ŃŃ ĐČ ĐżĐ”Ń€ĐČĐžŃ‡ĐœĐŸĐč Đž ĐČŃ‚ĐŸŃ€ĐžŃ‡ĐœĐŸĐč ĐżŃ€ĐŸŃ„ĐžĐ»Đ°ĐșтоĐșĐ” ВСС, ŃĐŸŃŃ‚Đ°ĐČĐ»ŃĐ”Ń‚ ĐŸĐșĐŸĐ»ĐŸ 7161 Đž 3341 Ń‡Đ”Đ»ĐŸĐČĐ”ĐșĐ° ŃĐŸĐŸŃ‚ĐČДтстĐČĐ”ĐœĐœĐŸ. ĐœĐŸĐŽĐ”Đ»ĐžŃ€ĐŸĐČĐ°ĐœĐžĐ” трДхĐșŃ€Đ°Ń‚ĐœĐŸĐłĐŸ ĐżŃ€ĐžŃ€ĐŸŃŃ‚Đ° чОсла ИКД ĐżĐŸ ĐŸŃ‚ĐœĐŸŃˆĐ”ĐœĐžŃŽ Đș Ń‚Đ”ĐșŃƒŃ‰ĐžĐŒ ĐŸĐ±ŃŠĐ”ĐŒĐ°ĐŒ ĐŸĐ±Đ”ŃĐżĐ”Ń‡Đ”ĐœĐœĐŸŃŃ‚Đž ĐČ ĐĐ’Đ‘ ĐżĐŸĐ·ĐČĐŸĐ»ŃĐ”Ń‚ ĐŽĐŸĐżĐŸĐ»ĐœĐžŃ‚Đ”Đ»ŃŒĐœĐŸ ĐŸĐ±Đ”ŃĐżĐ”Ń‡ĐžŃ‚ŃŒ 573 ĐżĐ°Ń†ĐžĐ”ĐœŃ‚Đ° ĐČ Ń€Đ°ĐŒĐșах пДрĐČĐžŃ‡ĐœĐŸĐč ĐżŃ€ĐŸŃ„ĐžĐ»Đ°ĐșтоĐșĐž ВСС, затратОĐČ ĐŽĐŸĐżĐŸĐ»ĐœĐžŃ‚Đ”Đ»ŃŒĐœĐŸ 638 ĐŒĐ»Đœ Ń€ŃƒĐ±., Đž 267 ĐżĐ°Ń†ĐžĐ”ĐœŃ‚ĐŸĐČ ĐČ Ń€Đ°ĐŒĐșах ĐČŃ‚ĐŸŃ€ĐžŃ‡ĐœĐŸĐč ĐżŃ€ĐŸŃ„ĐžĐ»Đ°ĐșтоĐșĐž ВСС про Ń€Đ°Đ·ĐŒĐ”Ń€Đ” ĐŽĐŸĐżĐŸĐ»ĐœĐžŃ‚Đ”Đ»ŃŒĐœŃ‹Ń… затрат 230 ĐŒĐ»Đœ Ń€ŃƒĐ±. ĐĄĐœĐžĐ¶Đ”ĐœĐžĐ” ŃŃ‚ĐŸĐžĐŒĐŸŃŃ‚Đž ĐžĐŒĐżĐ»Đ°ĐœŃ‚Đ°Ń†ĐžĐž ИКД ĐČ ŃŃ†Đ”ĐœĐ°Ń€ĐžĐž ВМП 1 ŃĐżĐŸŃĐŸĐ±ŃŃ‚ĐČŃƒĐ”Ń‚ ĐżĐŸĐČŃ‹ŃˆĐ”ĐœĐžŃŽ ĐŽĐŸŃŃ‚ŃƒĐżĐœĐŸŃŃ‚Đž ĐŽĐ°ĐœĐœĐŸĐč Ń‚Đ”Ń…ĐœĐŸĐ»ĐŸĐłĐžĐž Đ·Đ° счДт ĐČысĐČĐŸĐ±ĐŸĐ¶ĐŽĐ”ĐœĐžŃ ĐŽĐŸĐżĐŸĐ»ĐœĐžŃ‚Đ”Đ»ŃŒĐœŃ‹Ń… срДЎстĐČ ĐČ Ń€Đ°Đ·ĐŒĐ”Ń€Đ” 133 ĐŒĐ»Đœ Ń€ŃƒĐ±., ĐżĐŸĐ·ĐČĐŸĐ»ŃŃŽŃ‰ĐžŃ… ĐČŃ‹ĐżĐŸĐ»ĐœĐžŃ‚ŃŒ ĐŽĐŸĐżĐŸĐ»ĐœĐžŃ‚Đ”Đ»ŃŒĐœŃ‹Đ” ĐŸĐżĐ”Ń€Đ°Ń†ĐžĐž ĐżĐŸ ŃƒŃŃ‚Đ°ĐœĐŸĐČĐșĐ” ĐżŃ€ĐžĐ±ĐŸŃ€ĐŸĐČ Đ˜ĐšĐ” 143 ĐżĐ°Ń†ĐžĐ”ĐœŃ‚Đ°ĐŒ про пДрĐČĐžŃ‡ĐœĐŸĐč Đž ĐČŃ‚ĐŸŃ€ĐžŃ‡ĐœĐŸĐč ĐżŃ€ĐŸŃ„ĐžĐ»Đ°ĐșтоĐșĐ” ВСС ŃŃƒĐŒĐŒĐ°Ń€ĐœĐŸ.ЗаĐșĐ»ŃŽŃ‡Đ”ĐœĐžĐ”. ИКД яĐČĐ»ŃĐ”Ń‚ŃŃ Đ·Đ°Ń‚Ń€Đ°Ń‚ĐœĐŸ-ŃŃ„Ń„Đ”ĐșтоĐČĐœĐŸĐč Ń‚Đ”Ń…ĐœĐŸĐ»ĐŸĐłĐžĐ”Đč ĐČ ŃĐ”ĐłĐŒĐ”ĐœŃ‚Đ” ĐČŃ‚ĐŸŃ€ĐžŃ‡ĐœĐŸĐč ĐżŃ€ĐŸŃ„ĐžĐ»Đ°ĐșтоĐșĐž ВСС. ĐĄĐœĐžĐ¶Đ”ĐœĐžĐ” ŃŃ‚ĐŸĐžĐŒĐŸŃŃ‚Đž ИКД ĐČ Ń€Đ”Đ·ŃƒĐ»ŃŒŃ‚Đ°Ń‚Đ” Ń€Đ°Đ·ĐłŃ€ŃƒĐżĐżĐžŃ€ĐŸĐČĐșĐž тарофа ВМП 2 Đ·ĐœĐ°Ń‡ĐžŃ‚Đ”Đ»ŃŒĐœĐŸ ĐżĐŸĐČŃ‹ŃˆĐ°Đ”Ń‚ ĐșĐ»ĐžĐœĐžĐșĐŸ-эĐșĐŸĐœĐŸĐŒĐžŃ‡Đ”ŃĐșую ŃŃ„Ń„Đ”ĐșтоĐČĐœĐŸŃŃ‚ŃŒ ĐŽĐ°ĐœĐœĐŸĐč Ń‚Đ”Ń…ĐœĐŸĐ»ĐŸĐłĐžĐž Đž ŃĐżĐŸŃĐŸĐ±ŃŃ‚ĐČŃƒĐ”Ń‚ ДД ĐŽĐŸŃŃ‚ŃƒĐżĐœĐŸŃŃ‚Đž ĐŽĐ»Ń ĐżĐ°Ń†ĐžĐ”ĐœŃ‚ĐŸĐČ. йаĐșĐžĐŒ ĐŸĐ±Ń€Đ°Đ·ĐŸĐŒ, про Ń„ĐžĐœĐ°ĐœŃĐžŃ€ĐŸĐČĐ°ĐœĐžĐž ĐžĐŒĐżĐ»Đ°ĐœŃ‚Đ°Ń†ĐžĐč ĐżĐŸ Ń€Đ°Đ·ĐłŃ€ŃƒĐżĐżĐžŃ€ĐŸĐČĐ°ĐœĐœŃ‹ĐŒ Ń‚Đ°Ń€ĐžŃ„Đ°ĐŒ ĐČ Ń€Đ°ĐŒĐșах ĐżĐ”Ń€Đ”Ń‡ĐœŃ ВМП 1 ИКД яĐČĐ»ŃĐ”Ń‚ŃŃ Đ·Đ°Ń‚Ń€Đ°Ń‚ĐœĐŸ-ŃŃ„Ń„Đ”ĐșтоĐČĐœĐŸĐč ĐŸĐżŃ†ĐžĐ”Đč пДрĐČĐžŃ‡ĐœĐŸĐč Đž ĐČŃ‚ĐŸŃ€ĐžŃ‡ĐœĐŸĐč ĐżŃ€ĐŸŃ„ĐžĐ»Đ°ĐșтоĐșĐž ВСС ĐČ Đ Đ€

    Experimental bounds on sterile neutrino mixing angles

    Get PDF
    We derive bounds on the mixing between the left-chiral ("active") and the right-chiral ("sterile") neutrinos, provided from the combination of neutrino oscillation data and direct experimental searches for sterile neutrinos. We demonstrate that the mixing of sterile neutrinos with any flavour can be significantly suppressed, provided that the angle theta_13 is non-zero. This means that the lower bounds on sterile neutrino lifetime, coming from the negative results of direct experimental searches can be relaxed (by as much as the order of magnitude at some masses). We also demonstrate that the results of the negative searches of sterile neutrinos with PS191 and CHARM experiments are not applicable directly to the see-saw models. The reinterpretation of these results provides up to the order of magnitude stronger bounds on sterile neutrino lifetime than previously discussed in the literature. We discuss the implications of our results for the Neutrino Minimal Standard Model (the NuMSM).Comment: 18 pages + Appendices. Journal version with updated figure

    The SHiP experiment at the proposed CERN SPS Beam Dump Facility

    Get PDF
    The Search for Hidden Particles (SHiP) Collaboration has proposed a general-purpose experimental facility operating in beam-dump mode at the CERN SPS accelerator to search for light, feebly interacting particles. In the baseline configuration, the SHiP experiment incorporates two complementary detectors. The upstream detector is designed for recoil signatures of light dark matter (LDM) scattering and for neutrino physics, in particular with tau neutrinos. It consists of a spectrometer magnet housing a layered detector system with high-density LDM/neutrino target plates, emulsion-film technology and electronic high-precision tracking. The total detector target mass amounts to about eight tonnes. The downstream detector system aims at measuring visible decays of feebly interacting particles to both fully reconstructed final states and to partially reconstructed final states with neutrinos, in a nearly background-free environment. The detector consists of a 50 m long decay volume under vacuum followed by a spectrometer and particle identification system with a rectangular acceptance of 5 m in width and 10 m in height. Using the high-intensity beam of 400 GeV protons, the experiment aims at profiting from the 4 x 10(19) protons per year that are currently unexploited at the SPS, over a period of 5-10 years. This allows probing dark photons, dark scalars and pseudo-scalars, and heavy neutral leptons with GeV-scale masses in the direct searches at sensitivities that largely exceed those of existing and projected experiments. The sensitivity to light dark matter through scattering reaches well below the dark matter relic density limits in the range from a few MeV/c(2) up to 100 MeV-scale masses, and it will be possible to study tau neutrino interactions with unprecedented statistics. This paper describes the SHiP experiment baseline setup and the detector systems, together with performance results from prototypes in test beams, as it was prepared for the 2020 Update of the European Strategy for Particle Physics. The expected detector performance from simulation is summarised at the end

    Fast simulation of muons produced at the SHiP experiment using generative adversarial networks

    Get PDF
    This paper presents a fast approach to simulating muons produced in interactions of the SPS proton beams with the target of the SHiP experiment. The SHiP experiment will be able to search for new long-lived particles produced in a 400 GeV/c SPS proton beam dump and which travel distances between fifty metres and tens of kilometers. The SHiP detector needs to operate under ultra-low background conditions and requires large simulated samples of muon induced background processes. Through the use of Generative Adversarial Networks it is possible to emulate the simulation of the interaction of 400 GeV/c proton beams with the SHiP target, an otherwise computationally intensive process. For the simulation requirements of the SHiP experiment, generative networks are capable of approximating the full simulation of the dense fixed target, offering a speed increase by a factor of Script O(106). To evaluate the performance of such an approach, comparisons of the distributions of reconstructed muon momenta in SHiP's spectrometer between samples using the full simulation and samples produced through generative models are presented. The methods discussed in this paper can be generalised and applied to modelling any non-discrete multi-dimensional distribution

    The experimental facility for the Search for Hidden Particles at the CERN SPS

    Get PDF
    The International School for Advanced Studies (SISSA) logo The International School for Advanced Studies (SISSA) logo The following article is OPEN ACCESS The experimental facility for the Search for Hidden Particles at the CERN SPS C. Ahdida44, R. Albanese14,a, A. Alexandrov14, A. Anokhina39, S. Aoki18, G. Arduini44, E. Atkin38, N. Azorskiy29, J.J. Back54, A. Bagulya32Show full author list Published 25 March 2019 ‱ © 2019 CERN Journal of Instrumentation, Volume 14, March 2019 Download Article PDF References Download PDF 543 Total downloads 7 7 total citations on Dimensions. Article has an altmetric score of 1 Turn on MathJax Share this article Share this content via email Share on Facebook Share on Twitter Share on Google+ Share on Mendeley Article information Abstract The Search for Hidden Particles (SHiP) Collaboration has shown that the CERN SPS accelerator with its 400 GeV/c proton beam offers a unique opportunity to explore the Hidden Sector [1–3]. The proposed experiment is an intensity frontier experiment which is capable of searching for hidden particles through both visible decays and through scattering signatures from recoil of electrons or nuclei. The high-intensity experimental facility developed by the SHiP Collaboration is based on a number of key features and developments which provide the possibility of probing a large part of the parameter space for a wide range of models with light long-lived super-weakly interacting particles with masses up to Script O(10) GeV/c2 in an environment of extremely clean background conditions. This paper describes the proposal for the experimental facility together with the most important feasibility studies. The paper focuses on the challenging new ideas behind the beam extraction and beam delivery, the proton beam dump, and the suppression of beam-induced background
    corecore