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Abstract

We consider the backreaction of the vacuum polarization effect for a massive charged scalar field in the presence of a singular
magnetic massless string on the background metric. Using semiclassical approach, we find the first-brdeitgjrmetric
modifications and the corresponding gravitational potential and deficit angle. It is shown that, in certain region of values of
coupling constant and magnetic flux, the gravitational potential and deficit angle can be positive as well as negative over all
distances from the string and can even change its sign. Unlike the case of massless scalar field, the gravitational corrections
were found to have short-range behavior.

00 2004 Elsevier B.\VOpen access under CC BY license,

1. Introduction

Gauge theories with spontaneous symmetry breaking predict the emergence of cosmic objects with topology
defect in the early Universe. Such objects can possibly survive at the present day (see the review by[¥jlenkin
and references therein). In topology defect points the spontaneous symmetry breaking principle, giving the mass
for fields, is no more valid. So physical fields need sdrmendary conditions, that cauiee vacuum polarization
and appearance of non-zero vacuum expectation value of the energy—momentum tensor of quantum fields like in
Casimir effect2]. Non-zero vacuum expectation value of the energy—momentum tensor in one’s turn serves as a
source of gravitatiofi3,4] and can take part in cosmological models of the Universe taking into account vacuum
quantum effects.

One of the topology defect manifestations, whose existence is not in contradiction with observaf#g, data
cosmic strings which are particularly interested both as possible “seed” for galaxy forif&g#pand as possible
gravitational leng8]. Space—time metric of the cosmic strings ingynUniverse in the linearized approach were
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found by Vilenkin[8] and exactly in[9,10]. In spite of large linear mass density of the stripgd~ 10?2 g/cm)
the space—time metric is not highly curved near the stringfana static, cylindrically symmetric cosmic string is
conical and hence flat

ds? = —dt?> + dz? + dr? + (1 — 4p)%r2 dg? (1.1)

with deficit angleA¢ = 87 . The effects of the quantum-mechanical scattering of a test particle on a string were
estimated if11-13]} The vacuum polarization effect of quantum fields in the string background is considerably
large near the string (see, for examgBd]). So it can significantly modify sgce—time metric in the vicinity of

the string. The backreaction of the vacuum energy—momentum tensor on space—timevaefirst investigated

by Hiscock[15] in linear perturbations within the semiclassical approach. If the cosmic string carries a magnetic
flux, the vacuum polarization has also contribution from the Bohm—Aharonov interafti®ig]. In this case, the
vacuum expectation value of the energy—momentum tensor of quantum fields was derived both for fi&jsless
and massive fielfll9-21] but backreaction of the vacuum polarizatiwvas analyzed in detail only for massless
field [22].

As known, the energy—momentum tensor in the case of material field of zero mass is equivalent to the case of
massive field at small distances. But, as one can see[0nin the case of massless material field the physical
peculiarities of the tensor componenthlavior at finite distances are lost. In particular, the short-range exponen-
tially decreasing of the tensor components is absent, and, more interesting, the tensor components of the massles
field in principle lose possibility of changing its sigmder moving away from the string. Hence, the case of the
massless field is a first order approximation of the general massive case. To illustrate above, w@2@fevbere
the massive scalar field was detailed considered andabe of zero mass is a simple constant on the figures for
dimensionless tensor component:%, 417" 18199 r4133) instead of evidently complicatl structure. In this re-
spect, it seems to be of interest to carefully consider the backreaction in the more physical realistic and the common
case of massive quantum field to see possible new features arising from the massiveness.

In this Letter, we use the analytically obtained re$20] to explicitly investigate in the linear approximation
the backreaction of the massive field on the space—time metric and plo@isgiquences of one.

In Section2 we generalize the linear approximation metlibsl to the case of arbitrary field in the background
of cosmic string. Using results of Secti@mnd[20], in Section3 we analytically find expressions for the modified
metric, Newtonian gravitation potential and deficit angle, that are analyzed in Se4tismns detail. Discussions
of obtained results can be founddoncluding remarks, some mathatical aspects are placeddppendix A

2. Perturbative approach

The exterior metric of a static, cylindrically symmetric cosmic string (with or without the magneticifjux
is Eqg.(1.1). This metric induces non-zero vacuum expectation values of the energy—momentuniZé&nsafra
quantum field. We are interested in considering the backreaction of this energy—momentum tensor on a string’s
metric. To do this in a semiclassical approach, one has to solve the Einstein equations

Gl =8xn(T}). (2.1)

As we pointed out in introduction, such problem for the massless fields was first solved by His¢bk in
this section, we follow15] to obtain the result for any type of fields.

The general static, cylindrically symmetric and invariant under Lorentz boosts alonegttie metric has the
form

ds® = ") (—di? + dz? + dr?) + eV D dy?. (2.2)

1 Here and over all the paper we use Planck urtits: i = ¢ = 1 in which z ~ 1076,
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Corresponding components of the Einstein tensor are

Gi=Gi=e"2(¢"+y" + "7, (2.3)
G =2 (@) +2¢'y), (2.4)
GY=e"2((¢))? +2¢"), (2.5)

where prime means the derivative hy
If GY =0 in the exterior of a string, we have

$0=0, Yo = In(ar). (2.6)

To join interior and exterior solutions one have to put 1 — 4. (see[9] for details) and we recovél.1).
Since(T}') is small quantum correction, we can expand the solutid® dfyabout the background meti(2.6):

¢ =¢o+ o1, YV =0+ Y1, (2.7)

wherey and¢g are from(2.6), andp; andyr; are supposed to be the first order of smallness, sanig'gs
In the first order approximation, E¢R.1)takes form

2
o1+ Vi + vi=8r(Ty), (2.8)
2 / r

—¢1=8n(T/), (2.9)
2¢1 = 8r(TY), (2.10)

and the exterior metri2.2) modifies to

ds? = (14 2¢1(r))[—dt? + dz% + dr?] + (1 — 40)%r?(1 + 2y) dg?. (2.11)

Egs.(2.9), (2.10)hat defingps function are adjusted 7)) + r (7)) = (Tf) which is just a--component of the
covariant conservation conditioarfthe energy—momentum tens&r,,((Tv“) =0). We propose it to be justified.
Using substitution)] = x /1?2, solution of Eqs(2.8), (2.9)can be easily found:

r

¢1(r) =4n / dr' - r(TI (), (2.12)
r g r’
Ya(r) =47 / —2 / dr" " ?[2T} (")) = (T (")) (2.13)

Lower limits of integration defined so thi (r) andy1(r) to be vanishing at infinity.In other words, we neglect
the homogeneous solution (#.8)—(2.10)rs having no relation to our effect.

2 We expect the induced vacuum expectation values of energy—momentum tensor to be decreasing function of distance from the string, so it
is natural to choose the constants of integration so the n{gtdd)is flat at infinity.
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It is more convenient to introduce new radial coordinatevhich is the measure of proper distance from the
string:

do=+/14+2p1(r)dr — p%r+f¢1(r/)dr/, (2.14)

where we again chose the arbitrary constant smdr to be equal at infinity. With the same accuracy up to linear
terms

0
rXp —/¢1(/0’) dp', ¢1(r)~¢1(p) and yi(r) = Y1(p). (2.15)

Using(2.14)and(2.15)we can rewrite the induced metii2.11)in the form

P
2
ds? = (14 2¢1(p))[—dr® + dz?] + dp? + (1 — 4p)%p? (1 +20100) / ¢1(p") dp/) dg?. (2.16)

The condition of validity of this result is the smallness of first order perturbation comparing to one:

lp1(0)| <1, |y < 1. (2.17)

Newtonian gravitational potentid is recovered from thggg component of the metric ago= —(1+ 2V), so
itis ¢1(p) in our case. Gravitational force acting at the probe particle with unit mass is

f(p) =—1(p) = —4rp(T] (p)), (2.18)
where we use@.9). The lengthL of the circumference of constapntin (2.16)is

L=pQ2r - Ayp),

where

p
1
A =21 <4M + (1 —4w) |:; / $1(p") dp’ — 1#1(/))}) (2.19)

is a deficit angle.

3. Singular magnetic flux
In this section we will consider the particular case of a massive charged scalar field in the background of a

singular masslessu(= 0) and caring magnetic flux string. Vacuuespectation value of the induced energy—
momentum tensor of a scalar field was computel@0j:

. 2 X
<th> _ <TZ) — _M (m) f dv cosr[(ZF -1 arccosh)]
1

: @4n)d \r 2—1

X U_3{[1 +2(1—- 4§)U2]K2(2mrv) —-2(1- 4€)mrv3K3(2mrv)}, (3.1)

. 2 X
(17) = _% (?) f U‘i“_ _cosf{(2F - 1) arccoshyu=3(1 — 46v?)Ko(2mrv), 3.2)
1
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16siNF)
(rg)= W( ) \/_ cost (2F — 1) arccosh]

XU_3(1—4§U ){Kz(Zmrv) —2mrvK3(2mrU)}, (3.3)

wherem is the mass of a scalar field; is the fractional part (< F < 1) of the string’s magnetic flux® (in
the units of quantum flux 2fi/e) andé is the coupling constant of the scalar field to the scalar curvature of the
space—time (for details s¢20]).

Using (3.2) and general relation®.12) (2.18) one can obtain the following expressions for the gravitational
force acting at a point particle of unit mass and for the gravitational potential:

Flp) = Sln(Fn) m

\/_ cosl{ (2F — 1) arccosh Ju™3(1 — 46v?) K2(2mpv), (3.4)

Sln(Fn) m

$1(p) = J— cosH (2F — 1) arccosh]u™*(1 — 46v?) K1(2mpv). (3.5)

The deficit angle(2.19)has the form (seAppendix A):

Ag(p) = sm(Fn) m \/_ cosl{(2F — 1) arccosh Ju™*
x[(3—2(1- 2g)u 3G (2mpv) +4(1— (1 — 26)v?)K1(2mpv)], (3.6)
where
G(z) = / Ko(z)dz = %(Z[KO(Z)L—l(Z) + K1(z)Lo(2)] — 1) (3.7)

andL,(z) is the modified Struve function of order[23].

Asymptotics of(3.5)and(3.6) at small and large distances from the string could be easily computed using the
asymptotical expressions f8.1)—(3.3)given in[20]. For the gravitational potential one has

F(1-F)y(F,$§) 1
#1(p) T 1272 p L e (3.8)
Fr e=2m 1
#1ip) ~ (1 - a0 ST S > (3.9)

and for the deficit angle

2F(1— F)8(F
( ;3( L (3.10)
3p m

Ap(p) ~

sintF e —2mp 1
Ap(p) ~ (46— 1) 7 p>— (3.11)

where we use

y(F.§)=F(1—-F)—2(6§ - 1), (3.12)
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S(F,&)=F(1—F)+65—1. (3.13)
Finally, the general expressig¢2.16)for the metric in our caséu = 0) takes form:

A
ds? = (1+ 2¢1(p))[~d1? + dz?] + dp® + ,02(1 - fr—(m>d¢2, (3.14)

whereg1(p) and Ap(p) are defined in EqY3.5), (3.6). Analyzing Eq¥(3.5), (3.6)one can conclude that lin-
ear corrections to the metric has a symmeiry> 1 — F' like as components of the energy—momentum tensor
(3.1)—-(3.3)

4. Gravitational potential

Consider the expression for the gravitational potent®ab). The function integrated over is product of
K1(2mpv) andW (v), where

coshi(2F — 1) arccoshv]
vi/u2—1
In the regiorv € [1, 0c0) W (v) is negative i > 1/4 and once change the signet ﬁ if & <1/4.Atthe same

W) = (1-4£0v2).

time K1(2mpv) is decreasing positive function, whichat- mi become less than one and exponentially goes to
zero with increasing. Analyzing this product of functions, one can conclude that the integ(&l.5) is negative
for all values ofp if &£ > 1/4 and may change its sign at some value d@f & < 1/4 but only once.

To clarify gravitational potential behavior in the regién< 1/4 one need to analyse sign of the asymptotical
expression$3.8)and(3.9). For p > 1/m one can immediately get

1 1

For knowing sign ofp1(p) asymptotic at small distancép « 1/m) one has to analysg(F, £). Considering
it as a function ofF it is easy to see that(F, &) is negative for all values of if & > 3/16, positive for all
values ofF if £ < 1/6 and its sign depends dn otherwise:y (F,&) > 0if F € (F,,1— F,) andy(F,§) <0 if

Fe(0,F,)U(1—Fp,1),where

po— 1= V3E-165) V3(23—165). (4.2)

Using above, one can conclude that there are three different types of gravitational potential behavior:

Typea: &€ (1/4,00), Fe(0,1).
In this case, (F,&) <0 at all F. So at small distanceg;(p) behaves as-1/p? and asymptotically
approaches to zero from below at largeAs it cannot intersect zero more than once, it cannot intersect
it at all. Analogous we conclude that it has not extremes. So, it is monotonic and attractive function at all
distances.

& €(3/16,1/4), Fe(0,1),
{g €(1/6,3/16], Fe(0,F,)U(1—Fp,1).

In this range of parameterg(F, &) < 0 and gravitational potential is attractive at small distances, but
since& < 1/4 itis repulsive at large. So, with increasing, ¢1(p) increases as1/p2 atp <« 1/m, then

at somep intersects zero, reaches its maximum valuep(at 1/m according to numerical computation)
and decreases to zero from above.

Type b:
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0.005¢}

-0.005¢

-0.01*"

Fig. 1. Gravitational potential i -independent regions far = 1/2 andé = 0.26 (type a), QL9 (type b), 014 (type c) correspondingly from
down to up.

. é € (_OO, 1/6]5 F e (O’ 1)5
Typec: {ge(l/s, 3/16), Fe (Fp.1—Fp).

In this casey (F, £) > 0 and this means that at small distange&o) behaves as 12 Since it is the case

of & < 1/4, theng1(p) asymptotically approaches to zero from above at large distances. Analogously
to the previous case we conclude that gravitational potential in this range of parameters is repulsive,
droningly decreasing function.

Our argumentation fails if =1/4 or F = F,, F =1 — F,, because in this case asymptotical expressions
(3.8), (3.9)vanishes and we need the next terms of expansion. Frequently considered in the literatufe-cases
(so-called minimal coupling) angl= 1/6 (conformal coupling) belong tgpe c that corresponds to repulsion at
all distances.

We plot ¢1(p) (seeFigs. 1, 3 to see general features of the gravitatl potential behavior patently. Here
variablemyp is alongx-axis and dimensionless gravitational poteniialp)/m? is alongy-axis. In the regions
where type of the gravitational potential behavior does not depend on the magnefic the¢-dependence of the
gravitational potential is presentedhig. 1 In the region where type of gravitational potential behavior is sensitive
to the magnetic fluxé € (1/6, 3/16)), we illustrate the gravitational potential &sfunction inFig. 2

The maximum amplitude of the local gravitational potential is at half-integer value of flux 1/2). In the
F-sensitive alternating-sign part of the region§lk & < 3/16, F € (0, F,) U (1 — F,, 1)), effect is increasing
under going from zero flux to the border poifis= F,.

Condition (2.17) of validity of our linear approximation is violated near the string. Using asymptotical ex-
pression(3.8) for the gravitational potential at small distances and recovering the dimension, one can rewrite the
condition of validity in the form

2
- <1, (4.3)
P

wherel, ~ 10-33cm is Planck length. This is what we expectedsirat Planck scales, the semiclassical approach
(2.1)is violated, and we cannot consider the gravitational field as a background of quantum processes.

Finishing this section it will be useful to note that since gravitational f¢B:é) is a derivative of(3.5), the
gravitational force behavior is similar to the behavior of gravitational potential.
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0.15¢ ¢ \

025t i |
0.075}

0.025

Fig. 2. Gravitational potential at thE-sensitive regiorn¢ (%, 1—36)) for the cases of =0.18, F), = 0.2. Solid lines correspond’ from the
regionF € (0, Fp) U (1— Fp,1): F =0.19, 01995 accordingly from down to up. For the regifre (F,, 1 — F),) dotted line corresponds to
F =0.21, dashed line té" = 1/2.

5. Deficit angle

The middle distance behavior of the deficit an@eb) is not so clear as for the gravitational potent@bj. So
one can differentiate the deficit angle behavior at three types depending on the asymptotical behavi(8.103ing
(3.11)we obtain:

Typel: £ e (1/4,00), F €(0,1).

Deficit angle is positive at small and large distances. At small distances it behavgs’amtl exponen-
tially decreases at > 1/m.

. )§€l1/6,1/4), Fe(01),
hpe2 {s €(1/8.1/6), Fe(Fu1- Fy).
At distanceso <« 1/m the deficit angle is positive and behaves #g2] but at large distances it change
its sign (at least once) and approaches to zero from below.
. ge(_oovl/S)v Fe(ov 1)a
pes {s €[1/8.1/6), Fe (O F)U(L—Fu D).

Deficit angle is negative at small and large distances.

Here we used notation

Fdzl_— VS;SE_D (5.1)

We plotAgp(p) (seeFigs. 3, 4 to see the general features of the defiaigle behavior evidently. Here variable
mp is alongx-axis and the dimensionless deficit angle(p)/m? is alongy-axis. In the regions where type of
the deficit angle behavior does not depend on the magnetidflbe & -dependence of the gravitational potential
is presented irFig. 3. In the region where type of the deficit angle behavior is sensitive to the magnetic flux
(& € (1/8, 1/6)), we illustrate the deficit angle & function inFig. 4.

The maximum amplitude of local deficit angle is at the half-integer value of the(fix 1/2) except the
F-sensitive part of region (B < & < 1/6) where if F € (Fy, 1 — Fy) the effect is minimal aF' = 1/2 and take
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0.25

-0.05¢

-0.1"

Fig. 3. Deficit angle inF-independent regions far = 1/2 and¢ = 0.26 (type 1), 017 (type 2), OL (type 3) correspondingly from up to down.

j

-2.510 |

Fig. 4. Deficit angle at the”-sensitive regioné e (%, %)) for the cases of = 0.14, F; = 0.2. Solid lines correspond’ from the region
F e (Fg’, 1-— Fy): F =0.5, 0.25 correspondingly from up to down. For the regiéne (0, F;) U (1 — F;,1) dotted line corresponds to
F =0.19, dashed line té&" = 0.1.

its maximum peak at the border points= F;; for the caseF € (0, F;) U (1 — Fy, 1) the lines corresponding
different values off' goes to negative infinity near the string and intersects under moving away from one.

Condition of validity of our result for the deficit angle coincides wih3)and, hence, do not lead to the new
restrictions.

6. Concluding remarks

In the semiclassical approach, we qauted the gravitational effect caused by the vacuum polarization of the
massive charged scalar field in the background of a singular massless carrying magnetic flux cosmic string. Correc-
tions(3.5),(3.6)to the metric componen{8.14)depend periodically on the cosmic string fl(®) (i.e., depends
on only its fractional valug’), has a symmetry” <~ 1 — F and vanish at its integer valye =n).
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It turned out, that behavior of the gravitational potential can be divided at 3 types dependinarehcoupling
constant. This three types are: attractive behavior over all distances, repulsive béhawéorall distances and
alternating-sign behavior (gravitational potential is negative near the string but change its sign and becomes positive
under moving away from it). The areas Bfandé parameters for different types are pointed out in Secfion
Gravitational potential was found to be repulsive in the commonly considered cases®and &= 1/6.

To see general features of gravitatibpatential behavior patently we plet (o) (seeFigs. 1, 3. Here variable
mp is alongx-axis and dimensionless gravitational potenpiglp) / m? is alongy-axis. In the regions where type of
the gravitational potential behavior does not depend on the magnetig flilne £ -dependence of the gravitational
potential is presented iRig. 1 In the region where type of the gravitational potential behavior is sensitive to the
magnetic flux¢ € (1/6, 3/16]), we illustrate the gravitational potential &sfunction inFig. 2.

The behavior of the deficit angle can be also divided in 3 types. The ardasnflé parameters for different
types are pointed out in SectidnTo see general features of the defangle behavior patently we plaétyp (o) (see
Figs. 3, 4. Here variablenp is again along:-axis and dimensionless deficit angle(p)/m? is alongy-axis. In
the regions where type of the deficit angle behavior does not depend on the magnéfictfiex -dependence of
the deficit angle is presentedhig. 3. In the region where type of the deficit angle behavior is sensitive to magnetic
flux (¢ € [1/8, 1/6)), we plot the deficit angle a& function inFig. 4.

Itis interesting to note that regions of the different tyjpé the gravitational potential and deficit angle behavior
strictly speaking are different. From the classical point of view we could expect that for the attractive-type potentials
deficit angle is positive and for repulsive-type potentialsismegative (positive deficit angle lead to the bending of
light as like it attracts to the string and vice versa). This is a fact for the regions/4 (attractive-type potential
and positive deficit angle) and < 1/8 (repulsive-type potential and negative deficit angle). But at the region
& €(1/8,1/4) our classical reasons fail. For examples #= 1/6 (conformal coupling), the gravitational potential
of a string is repulsive at all distances, while the deficit angle is alternating-sign.

Near a string the potential and deficit angle behaves as like the scalar field is massless and we recover the
result of[22] (for the zero linear mass density of string). But in comparing 2 (see asymptotic expressions
(3.8), (3.10), the massiveness of field gives an essentially new type of behavior that allow gravitational potential
and deficit angle change its sign under moving away fronsthiag. One another difference is that the massless
scalar field produces a long-range power decreasing pot€digand deficit angl€3.10) while in our case it are
short-range exponentially decreasing functi¢®9)and(3.11)

Condition of validity of semiclassical approximati¢f3)is violated near the string at Planck length. It should
be noted that we considered simplifiedafically solved case of massle§s = 0) string with zero radius. For
realistic string which radius is of the order of the Compton wavelength of the Higgs bosons involved in the phase
transitions, the conditio(4.3)is satisfied everywhere outside the string.

As was pointed iff22], the contribution to the gravitational effect coming from the Aharonov—Bohm interaction
dominates over one coming from the non-zero linear mass densityhe string. So we can expect that our results
will be not changed significantly with taking in to account
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Appendix A

The deficit angle is given b§2.19) Consider separately two corresponding terms (in our pase).
Using recurrent relation

K1(z)

= —Ko(z) — 9:K1(2) (A1)

and Eq.(3.5)for ¢1(p) one can easily obtain

f¢1(p)d’ _SIn(Fn) m/
T

x [G(2mpv) + K1(2mpv)], (A.2)

whereG(z) is defined in(3.7).
To computey1(p) one need expression under integral operatidi2ih3)

cosl{ (2F — 1) arccosh Ju™*(1 — 46v?)

SIN(F )

>—<T5>=—T< ) J—

v [1+41 - 3;:)u 2 K2(2mpv) + [1 - 2(1 — 26)v?] - 2mpv - K3(2mpv)}.  (A.3)

cost (2F — 1yarccosh|

Using relation

/[ble(z) + bazK3(2)|dz = /[(bl + 2b2) K2(2) — bazd. K2(2) | dz

—{b2zK2(2) + (b1 + 3b2)[G(2) + 2K1(2)]}, (A.4)
and Eq.(A.3) one can get:

’

p

/dp// . p//Z[z(Ttt (,0//)> _ <T$(p”)>]

sin(Frm) / dv 4 2 / /
= 2F — 1) arccoshy 1-2(1-2 -2 - Ko2(2m
g3 " / N cosH( )al Jo™{[1- 21— 26)v?] - 2mp’v - K2(2mp'v)
+2(2—v?)[G@mp'v) + 2K1(2mp'v)]}. (A5)

Using expression
d
/ Z—S[ﬁsz(z) + f2(G(2) + 2K1(2)) ]

G K
=fd[ 2(Z)<fl+fz>+fz(ﬁ— O(Z))]

Z

1
:/ [ Ke@ o\ o f28< iz)>]z—z[(f1+fz)K1(z)+f2G(z)] (A.6)

and Egs(A.5), (2.13)one can easily obtain:
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Sln(Fn) m

Y1(r) = — cost (2F — 1) arccosh|

[

v {(5 —4(1—-¢&)v )Kl(Zmpv) + 2(2 — UZ)G(Zm,OU)}.
After substitution(A.2), (A.7) into (2.13)one get43.6).
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