31 research outputs found

    Profiling patterns of interhelical associations in membrane proteins.

    Get PDF
    A novel set of methods has been developed to characterize polytopic membrane proteins at the topological, organellar and functional level, in order to reduce the existing functional gap in the membrane proteome. Firstly, a novel clustering tool was implemented, named PROCLASS, to facilitate the manual curation of large sets of proteins, in readiness for feature extraction. TMLOOP and TMLOOP writer were implemented to refine current topological models by predicting membrane dipping loops. TMLOOP applies weighted predictive rules in a collective motif method, to overcome the inherent limitations of single motif methods. The approach achieved 92.4% accuracy in sensitivity and 100% reliability in specificity and 1,392 topological models described in the Swiss-Prot database were refined. The subcellular location (TMLOCATE) and molecular function (TMFUN) prediction methods rely on the TMDEPTH feature extraction method along data mining techniques. TMDEPTH uses refined topological models and amino acid sequences to calculate pairs of residues located at a similar depth in the membrane. Evaluation of TMLOCATE showed a normalized accuracy of 75% in discriminating between proteins belonging to the main organelles. At a sequence similarity threshold of 40%, TMFLTN predicted main functional classes with a sensitivity of 64.1-71.4%) and 70% of the olfactory GPCRs were correctly predicted. At a sequence similarity threshold of 90%, main functional classes were predicted with a sensitivity of 75.6-92.8%) and class A GPCRs were sub-classified with a sensitivity of 84.5%>-92.9%. These results reflect a direct association between the spatial arrangement of residues in the transmembrane regions and the capacity for polytopic membrane proteins to carry out their functions. The developed methods have for the first time categorically shown that the transmembrane regions hold essential information associated with a wide range of functional properties such as filtering and gating processes, subcellular location and molecular function

    The near-atomic cryoEM structure of a flexible filamentous plant virus shows homology of its coat protein with nucleoproteins of animal viruses

    Get PDF
    Abstract Flexible filamentous viruses include economically important plant pathogens. Their viral particles contain several hundred copies of a helically arrayed coat protein (CP) protecting a (+)ssRNA. We describe here a structure at 3.9 Å resolution, from electron cryomicroscopy, of Pepino mosaic virus (PepMV), a representative of the genus Potexvirus (family Alphaflexiviridae). Our results allow modeling of the CP and its interactions with viral RNA. The overall fold of PepMV CP resembles that of nucleoproteins (NPs) from the genus Phlebovirus (family Bunyaviridae), a group of enveloped (-)ssRNA viruses. The main difference between potexvirus CP and phlebovirus NP is in their C-terminal extensions, which appear to determine the characteristics of the distinct multimeric assemblies -a flexuous, helical rod or a loose ribonucleoprotein. The homology suggests gene transfer between eukaryotic (+) and (-)ssRNA viruses

    Computational strategies to combat COVID-19: useful tools to accelerate SARS-CoV-2 and coronavirus research

    Get PDF
    SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) is a novel virus of the family Coronaviridae. The virus causesthe infectious disease COVID-19. The biology of coronaviruses has been studied for many years. However, bioinformaticstools designed explicitly for SARS-CoV-2 have only recently been developed as a rapid reaction to the need for fast detection,understanding and treatment of COVID-19. To control the ongoing COVID-19 pandemic, it is of utmost importance to getinsight into the evolution and pathogenesis of the virus. In this review, we cover bioinformatics workflows and tools for theroutine detection of SARS-CoV-2 infection, the reliable analysis of sequencing data, the tracking of the COVID-19 pandemicand evaluation of containment measures, the study of coronavirus evolution, the discovery of potential drug targets anddevelopment of therapeutic strategies. For each tool, we briefly describe its use case and how it advances researchspecifically for SARS-CoV-2.Fil: Hufsky, Franziska. Friedrich Schiller University Jena; AlemaniaFil: Lamkiewicz, Kevin. Friedrich Schiller University Jena; AlemaniaFil: Almeida, Alexandre. the Wellcome Sanger Institute; Reino UnidoFil: Aouacheria, Abdel. Centre National de la Recherche Scientifique; FranciaFil: Arighi, Cecilia. Biocuration and Literature Access at PIR; Estados UnidosFil: Bateman, Alex. European Bioinformatics Institute. Head of Protein Sequence Resources; Reino UnidoFil: Baumbach, Jan. Universitat Technical Zu Munich; AlemaniaFil: Beerenwinkel, Niko. Universitat Technical Zu Munich; AlemaniaFil: Brandt, Christian. Jena University Hospital; AlemaniaFil: Cacciabue, Marco Polo Domingo. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación En Ciencias Veterinarias y Agronómicas. Instituto de Agrobiotecnología y Biología Molecular. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Agrobiotecnología y Biología Molecular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Chuguransky, Sara Rocío. European Bioinformatics Institute; Reino Unido. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Drechsel, Oliver. Robert Koch-Institute; AlemaniaFil: Finn, Robert D.. Biocurator for Pfam and InterPro databases; Reino UnidoFil: Fritz, Adrian. Helmholtz Centre for Infection Research; AlemaniaFil: Fuchs, Stephan. Robert Koch-Institute; AlemaniaFil: Hattab, Georges. University Marburg; AlemaniaFil: Hauschild, Anne Christin. University Marburg; AlemaniaFil: Heider, Dominik. University Marburg; AlemaniaFil: Hoffmann, Marie. Freie Universität Berlin; AlemaniaFil: Hölzer, Martin. Friedrich Schiller University Jena; AlemaniaFil: Hoops, Stefan. University of Virginia; Estados UnidosFil: Kaderali, Lars. University Medicine Greifswald; AlemaniaFil: Kalvari, Ioanna. European Bioinformatics Institute; Reino UnidoFil: von Kleist, Max. Robert Koch-Institute; AlemaniaFil: Kmiecinski, Renó. Robert Koch-Institute; AlemaniaFil: Kühnert, Denise. Max Planck Institute for the Science of Human History; AlemaniaFil: Lasso, Gorka. Albert Einstein College of Medicine; Estados UnidosFil: Libin, Pieter. Hasselt University; BélgicaFil: List, Markus. Universitat Technical Zu Munich; AlemaniaFil: Löchel, Hannah F.. University Marburg; Alemani

    ContDist: a tool for the analysis of quantitative gene and promoter properties

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The understanding of how promoter regions regulate gene expression is complicated and far from being fully understood. It is known that histones' regulation of DNA compactness, DNA methylation, transcription factor binding sites and CpG islands play a role in the transcriptional regulation of a gene. Many high-throughput techniques exist nowadays which permit the detection of epigenetic marks and regulatory elements in the promoter regions of thousands of genes. However, so far the subsequent analysis of such experiments (e.g. the resulting gene lists) have been hampered by the fact that currently no tool exists for a detailed analysis of the promoter regions.</p> <p>Results</p> <p>We present ContDist, a tool to statistically analyze quantitative gene and promoter properties. The software includes approximately 200 quantitative features of gene and promoter regions for 7 commonly studied species. In contrast to "traditionally" ontological analysis which only works on qualitative data, all the features in the underlying annotation database are quantitative gene and promoter properties.</p> <p>Utilizing the strong focus on the promoter region of this tool, we show its usefulness in two case studies; the first on differentially methylated promoters and the second on the fundamental differences between housekeeping and tissue specific genes. The two case studies allow both the confirmation of recent findings as well as revealing previously unreported biological relations.</p> <p>Conclusion</p> <p>ContDist is a new tool with two important properties: 1) it has a strong focus on the promoter region which is usually disregarded by virtually all ontology tools and 2) it uses quantitative (continuously distributed) features of the genes and its promoter regions which are not available in any other tool. ContDist is available from <url>http://web.bioinformatics.cicbiogune.es/CD/ContDistribution.php</url></p

    Computational strategies to combat COVID-19: useful tools to accelerate SARS-CoV-2 and coronavirus research

    Get PDF
    SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) is a novel virus of the family Coronaviridae. The virus causes the infectious disease COVID-19. The biology of coronaviruses has been studied for many years. However, bioinformatics tools designed explicitly for SARS-CoV-2 have only recently been developed as a rapid reaction to the need for fast detection, understanding and treatment of COVID-19. To control the ongoing COVID-19 pandemic, it is of utmost importance to get insight into the evolution and pathogenesis of the virus. In this review, we cover bioinformatics workflows and tools for the routine detection of SARS-CoV-2 infection, the reliable analysis of sequencing data, the tracking of the COVID-19 pandemic and evaluation of containment measures, the study of coronavirus evolution, the discovery of potential drug targets and development of therapeutic strategies. For each tool, we briefly describe its use case and how it advances research specifically for SARS-CoV-2. All tools are free to use and available online, either through web applications or public code repositories.Peer Reviewe

    Substrate translocation involves specific lysine residues of the central channel of the conjugative coupling protein TrwB

    Get PDF
    Conjugative transfer of plasmid R388 requires the coupling protein TrwB for protein and DNA transport, but their molecular role in transport has not been deciphered. We investigated the role of residues protruding into the central channel of the TrwB hexamer by a mutational analysis. Mutations affecting lysine residues K275, K398, and K421, and residue S441, all facing the internal channel, affected transport of both DNA and the relaxase protein in vivo. The ATPase activity of the purified soluble variants was affected significantly in the presence of accessory protein TrwA or DNA, correlating with their behaviour in vivo. Alteration of residues located at the cytoplasmic or the inner membrane interface resulted in lower activity in vivo and in vitro, while variants affecting residues in the central region of the channel showed increased DNA and protein transfer efficiency and higher ATPase activity, especially in the absence of TrwA. In fact, these variants could catalyze DNA transfer in the absence of TrwA under conditions in which the wild-type system was transfer deficient. Our results suggest that protein and DNA molecules have the same molecular requirements for translocation by Type IV secretion systems, with residues at both ends of the TrwB channel controlling the opening?closing mechanism, while residues embedded in the channel would set the pace for substrate translocation (both protein and DNA) in concert with TrwA

    The Cryo-EM Structure of a Complete 30S Translation Initiation Complex from Escherichia coli

    Get PDF
    Formation of the 30S initiation complex (30S IC) is an important checkpoint in regulation of gene expression. The selection of mRNA, correct start codon, and the initiator fMet-tRNAfMet requires the presence of three initiation factors (IF1, IF2, IF3) of which IF3 and IF1 control the fidelity of the process, while IF2 recruits fMet-tRNAfMet. Here we present a cryo-EM reconstruction of the complete 30S IC, containing mRNA, fMet-tRNAfMet, IF1, IF2, and IF3. In the 30S IC, IF2 contacts IF1, the 30S subunit shoulder, and the CCA end of fMet-tRNAfMet, which occupies a novel P/I position (P/I1). The N-terminal domain of IF3 contacts the tRNA, whereas the C-terminal domain is bound to the platform of the 30S subunit. Binding of initiation factors and fMet-tRNAfMet induces a rotation of the head relative to the body of the 30S subunit, which is likely to prevail through 50S subunit joining until GTP hydrolysis and dissociation of IF2 take place. The structure provides insights into the mechanism of mRNA selection during translation initiation
    corecore