42 research outputs found

    Nutrients increase epiphyte loads: broad-scale observations and an experimental assessment

    Get PDF
    The original publication can be found at www.springerlink.comThere is a global trend towards elevated nutrients in coastal waters, especially on human-dominated coasts. We assessed local- to regional-scale relationships between the abundance of epiphytic algae on kelp ( Ecklonia radiata) and nutrient concentrations across much of the temperate coast of Australia, thus assessing the spatial scales over which nutrients may affect benthic assemblages. We tested the hypotheses that (1) percentage cover of epiphytic algae would be greater in areas with higher water nutrient concentrations, and (2) that an experimental enhancement of nutrient concentrations on an oligotrophic coast, to match more eutrophic coasts, would cause an increase in percentage cover of epiphytic algae to match those in more nutrient rich waters. Percentage cover of epiphytes was most extensive around the coast of Sydney, the study location with the greatest concentration of coastal chlorophyll a (a proxy for water nutrient concentration). Elevation of nitrate concentrations at a South Australian location caused an increase in percentage cover of epiphytes that was comparable to percentage covers observed around Sydney’s coastline. This result was achieved despite our inability to match nutrient concentrations observed around Sydney (<5% of Sydney concentrations), suggesting that increases to nutrient concentrations may have disproportionately larger effects in oligotrophic waters.Bayden D. Russell, Travis S. Elsdon Bronwyn M. Gillanders and Sean D. Connel

    Stability of Strong Species Interactions Resist the Synergistic Effects of Local and Global Pollution in Kelp Forests

    Get PDF
    Foundation species, such as kelp, exert disproportionately strong community effects and persist, in part, by dominating taxa that inhibit their regeneration. Human activities which benefit their competitors, however, may reduce stability of communities, increasing the probability of phase-shifts. We tested whether a foundation species (kelp) would continue to inhibit a key competitor (turf-forming algae) under moderately increased local (nutrient) and near-future forecasted global pollution (CO2). Our results reveal that in the absence of kelp, local and global pollutants combined to cause the greatest cover and mass of turfs, a synergistic response whereby turfs increased more than would be predicted by adding the independent effects of treatments (kelp absence, elevated nutrients, forecasted CO2). The positive effects of nutrient and CO2 enrichment on turfs were, however, inhibited by the presence of kelp, indicating the competitive effect of kelp was stronger than synergistic effects of moderate enrichment of local and global pollutants. Quantification of physicochemical parameters within experimental mesocosms suggests turf inhibition was likely due to an effect of kelp on physical (i.e. shading) rather than chemical conditions. Such results indicate that while forecasted climates may increase the probability of phase-shifts, maintenance of intact populations of foundation species could enable the continued strength of interactions and persistence of communities

    Linking patterns and processes across scales: the application of scale-transition theory to algal dynamics on rocky shores

    Get PDF
    SUMMARY Understanding how species and environments respond to global anthropogenic disturbances is one of the greatest challenges for contemporary ecology. The ability to integrate modeling, correlative and experimental approaches within individual research programs will be key to address large-scale, long-term environmental problems. Scale-transition theory (STT) enables this level of integration, providing a powerful framework to link ecological patterns and processes across spatial and temporal scales. STT predicts the large-scale (e.g. regional) behavior of a system on the basis of nonlinear population models describing local (e.g. patch-scale) dynamics and the interaction between these nonlinearities and spatial variation in population abundance or environmental conditions. Here we use STT to predict the dynamics of turf-forming algae on rocky shores at Capraia Island, in the northwest Mediterranean. We developed a model of algal turf dynamics based on density-dependent growth that included the effects of local interactions with canopy algae. The model was parameterized with field data and used to scale up the dynamics of algal turfs from the plot scale (20×20 cm) to the island scale (tens of km). The interaction between nonlinear growth and spatial variance in cover of turfing algae emerged as a key term to translate the local dynamics up to the island scale. The model successfully predicted short-term and long-term mean values of turf cover estimated independently from a separate experiment. These results illustrate how STT can be used to identify the relevant mechanisms that drive large-scale changes in ecological communities. We argue that STT can contribute significantly to the connection between biomechanics and ecology, a synthesis that is at the core of the emerging field of ecomechanics

    Synergistic effects of climate change and local stressors: CO(2) and nutrient-driven change in subtidal rocky habitats

    Get PDF
    Journal compilation © 2009 Blackwell Publishing. Copyright © 2009 John Wiley & Sons, Inc. All Rights ReservedClimate-driven change represents the cumulative effect of global through local-scale conditions, and understanding their manifestation at local scales can empower local management. Change in the dominance of habitats is often the product of local nutrient pollution that occurs at relatively local scales (i.e. catchment scale), a critical scale of management at which global impacts will manifest. We tested whether forecasted global-scale change [elevated carbon dioxide (CO2) and subsequent ocean acidification] and local stressors (elevated nutrients) can combine to accelerate the expansion of filamentous turfs at the expense of calcifying algae (kelp understorey). Our results not only support this model of future change, but also highlight the synergistic effects of future CO2 and nutrient concentrations on the abundance of turfs. These results suggest that global and local stressors need to be assessed in meaningful combinations so that the anticipated effects of climate change do not create the false impression that, however complex, climate change will produce smaller effects than reality. These findings empower local managers because they show that policies of reducing local stressors (e.g. nutrient pollution) can reduce the effects of global stressors not under their governance (e.g. ocean acidification). The connection between research and government policy provides an example whereby knowledge (and decision making) across local through global scales provides solutions to some of the most vexing challenges for attaining social goals of sustainability, biological conservation and economic development

    Can strong consumer and producer effects be reconciled to better forecast 'catastrophic' phase-shifts in marine ecosystems?

    Get PDF
    The indirect effects of climate on species interactions were initially surprising, but ecological models that account for ecosystem decline have long underestimated their ubiquity and strength. Indirect effects not only yield "unexpected results", but also some of the strongest ecological effects (i.e. phase-shifts) that have been regarded as "catastrophes" on coral reefs, "collapses" of kelp forests and "crises" in seagrass meadows. Such effects went unanticipated because the impact of one species on another required knowledge of a third element that was inadequately understood. Subsequent debate over the causes of habitat loss has often been polarised by two extreme points of view, i.e. consumer versus producer effects. It is our perspective that these debates will persist unless we clarify the context-dependency of two kinds of indirect effect; those driven by strong consumer effects and those driven by strong producer effects. On human-dominated coasts, loss of coral, kelp and seagrass can occur as a function of change in trophic cascades (i.e. consumer effects) as well as change to competitive hierarchies (i.e. producer competition for resources). Because production and consumption are under strong physiological control by climate (providing predictable responses), there is merit in recognising the type and context of indirect effects to reduce errors associated with model-based forecasting. Indeed, forecasts of how global (e.g. elevated temperature and CO2) and local drivers (e.g. fishing and pollution) combine to drive ecological change will often depend on the relative strength of different kinds of indirect effects (i.e. consumer effects vs producer effects). By recognising the context-dependency of the indirect effects under investigation, the information content of forecasts may not only increase, but also provide an improved understanding of indirect effects and community ecology in general. © 2011 Elsevier B.V.Sean D. Connell, Bayden D. Russell, Andrew D. Irvin

    Context-dependency in the effects of nutrient loading and consumers on the availability of space in marine rocky environments

    Get PDF
    Background: Enhanced nutrient loading and depletion of consumer populations interact to alter the structure of aquatic plant communities. Nonetheless, variation between adjacent habitats in the relative strength of bottom-up (i.e. nutrients) versus top-down (i.e. grazing) forces as determinants of community structure across broad spatial scales remains unexplored. We experimentally assessed the importance of grazing pressure and nutrient availability on the development of macroalgal assemblages and the maintenance of unoccupied space in habitats differing in physical conditions (i.e. intertidal versus subtidal), across regions of contrasting productivity (oligotrophic coasts of South Australia versus the more productive coasts of Eastern Australia). Methodology/Principal findings: In Eastern Australia, grazers were effective in maintaining space free of macroalgae in both intertidal and subtidal habitats, irrespective of nutrient levels. Conversely, in South Australia, grazers could not prevent colonization of space by turf-forming macroalgae in subtidal habitats regardless of nutrients levels, yet in intertidal habitats removal of grazers reduced unoccupied space when nutrients were elevated. Conclusions/Significance: Assessing the effects of eutrophication in coastal waters requires balancing our understanding between local consumer pressure and background oceanographic conditions that affect productivity. This broader-based understanding may assist in reconciling disproportionately large local-scale variation, a characteristic of ecology, with regional scale processes that are often of greater relevance to policy making and tractability to management.Fabio Bulleri, Bayden D. Russell, Sean D. Connel

    Expansive covers of turf-forming algae on human-dominated coast: the relative effects of increasing nutrient and sediment loads

    No full text
    The original publication can be found at www.springerlink.comTurf-forming algae form more extensive habitat on subtidal rock adjacent to urban than non-urban coast of South Australia. This pattern is frequently observed on the world’s temperate coasts and is variously considered to be a result of enhanced concentration of nutrients or rates of sediment deposition on urban coasts. We experimentally tested which of three components of environmental change (increased nutrients in water, increased nutrients in sediments and increased sediment deposition) best explain the expansive covers of turf-forming algae on urban coasts. All three treatments had independent and positive effects on the percentage cover of turf-forming algae. The addition of nutrients from the water column had the largest influence (?2=0.55), which was more than six times greater than the effect of nutrients added to sediments (?2=0.08). An increase in rate of deposition of sediments had substantial effects (?2=0.35), which were about one third less than those of water-borne nutrients. Importantly, the combined effect of all three treatments caused a 77% increase in percentage cover of turf-forming algae, which is comparable to the observed difference in covers between urban and non-urban coast in South Australia (93%). These results suggest that human activities that reduce water quality in both nutrient and sediment loads account for major change observed on human-dominated coasts. Despite this knowledge, we still lack complete information on the mechanisms that switch the primary subtidal habitat from canopy-forming algae to turf-forming algae on human-dominated coasts.Sonia K. Gorgula and Sean D. Connel

    Biological testing of ships’ ballast water indicates challenges for the implementation of the Ballast Water Management Convention

    Get PDF
    Ships’ ballast water and sediments are vectors that contribute to the unintentional spread of aquatic non-native species globally. Ballast water management, as well as commissioning testing of ballast water management systems and compliance monitoring under the regulations of the International Maritime Organization (IMO) aim at minimizing the unwanted spread of organisms. This study compiles data for treated ballast water samples collected and analyzed from 228 ships during 2017–2023. The samples were collected from the ballast discharge line or directly from the ballast tank for enumeration of living organism concentrations in the categories of ≥50µm and &lt;50 to ≥10µm -sized organisms, as well as indicator microbes in comparison to the ballast water performance standard of the IMO (Regulation D-2). In addition, several ship-specific factors were examined to infer potential factors affecting compliance rates. Nearly all ships were compliant with the ballast water performance standard for indicator microbes and &lt;50 to ≥10µm -sized organisms, whereas almost half of all samples exceeded the limit of ten viable organisms m-3 for the ≥50µm -sized organisms. Compliance testing results did not differ significantly between sampling years, indicating that compliance rate did not change through time. The rate of compliance was higher for commissioning testing than compliance testing. Clear ship- or system-specific factors that lead to compliance or non-compliance were not detected, even though type of ballast water management system, filter mesh size associated with the system and source of ballast water affected compliance significantly either for the samples taken from the discharge line, or ballast tank. As compliance did not improve significantly over time, compliance testing of ships’ ballast water should be undertaken to ensure that the systems remain operational after commissioning and ships meet requirements of the D-2 standard. Furthermore, the study outcomes promote further research on the efficiency of filter mesh sizes and different filtration units associated with ballast water management systems, to improve mechanical removal of larger organisms. Finally, as several ships exceeded the compliance limit by hundreds or thousands of living organisms, technological advancements and operational measures may be needed to improve the overall reliability of ballast water management

    DataSheet_1_Biological testing of ships’ ballast water indicates challenges for the implementation of the Ballast Water Management Convention.xlsx

    No full text
    Ships’ ballast water and sediments are vectors that contribute to the unintentional spread of aquatic non-native species globally. Ballast water management, as well as commissioning testing of ballast water management systems and compliance monitoring under the regulations of the International Maritime Organization (IMO) aim at minimizing the unwanted spread of organisms. This study compiles data for treated ballast water samples collected and analyzed from 228 ships during 2017–2023. The samples were collected from the ballast discharge line or directly from the ballast tank for enumeration of living organism concentrations in the categories of ≥50µm and -3 for the ≥50µm -sized organisms. Compliance testing results did not differ significantly between sampling years, indicating that compliance rate did not change through time. The rate of compliance was higher for commissioning testing than compliance testing. Clear ship- or system-specific factors that lead to compliance or non-compliance were not detected, even though type of ballast water management system, filter mesh size associated with the system and source of ballast water affected compliance significantly either for the samples taken from the discharge line, or ballast tank. As compliance did not improve significantly over time, compliance testing of ships’ ballast water should be undertaken to ensure that the systems remain operational after commissioning and ships meet requirements of the D-2 standard. Furthermore, the study outcomes promote further research on the efficiency of filter mesh sizes and different filtration units associated with ballast water management systems, to improve mechanical removal of larger organisms. Finally, as several ships exceeded the compliance limit by hundreds or thousands of living organisms, technological advancements and operational measures may be needed to improve the overall reliability of ballast water management.</p
    corecore