111 research outputs found

    Antioxidant Effects of Bioactive Glasses (BGs) and Their Significance in Tissue Engineering Strategies

    Get PDF
    Elevated levels of oxidative stress are usually observed following injuries, leading to impaired tissue repair due to oxidation-related chronic inflammation. Several attempts have been made to manage this unfavorable situation, and the use of biomaterials with antioxidant activity is showing great promise in tissue engineering and regenerative medicine approaches. Bioactive glasses (BGs) are a versatile group of inorganic substances that exhibit an outstanding regenerative capacity for both hard and soft damaged tissues. The chemical composition of BGs provides a great opportunity for imparting specific biological activities to them. On this point, BGs may easily become antioxidant substances through simple physicochemical modifications. For example, particular antioxidant elements (mostly cerium (Ce)) can be added to the basic composition of the glasses. On the other hand, grafting natural antioxidant substances (e.g., polyphenols) on the BG surface is feasible for making antioxidant substitutes with promising results in vitro. Mesoporous BGs (MBGs) were demonstrated to have unique merits compared with melt-derived BGs since they make it possible to load antioxidants and deliver them to the desired locations. However, there are actually limited in vivo experimental studies on the capability of modified BGs for scavenging free radicals (e.g., reactive oxygen species (ROS)). Therefore, more research is required to determine the actual potential of BGs in decreasing oxidative stress and subsequently improving tissue repair and regeneration. The present work aims to highlight the potential of different types of BGs in modulating oxidative stress and subsequently improving tissue healing

    Motor Developmental Delay in 7500 Iranian Infants: Prevalence and Risk Factors

    Get PDF
    ObjectiveThe purpose of this study was to determine the prevalence and the most common risk factors of motor developmental delay in infants.Materials & MethodsFollowing ethical approval, a study was carried out on the prevalence and risk factors of infants with motor developmental delay. The first stage was conducted through a cross-sectional study to determine the prevalence of motor developmental delay on 7500 infants and the second stage was an analytic case - control survey to identify the most common risk factors on 140 infants, aged one month to three years with motor developmental delay. Data was collected using a demographic questionnaire, the Parents Evaluation of Developmental Status questionnaire, the Denver Developmental Screening Test II, a neurological assessment form, and the movement and tone assessment form.ResultsThe prevalence of motor developmental delay in 7500 infants was 18.7/1000. The most common risk factors in infants with motor developmental delay were prematurity (25.6%), low birth weight (19.2%), neonatal seizures (7.5%), hyaline membrane disease (6.7%), systemic infections of mothers during pregnancy (5.9%), severe neonatal hyperbilirubinemia (5%) in sequence. Motor developmental delay was significantly correlated with consanguinity of parents (p=0.001), prematurity (p=0.046), abnormal head circumference at birth (p=0.038), and low birth weight (p=0.026).ConclusionThe prevalence of motor developmental delay appears to be high and further studies should focus on different preventive strategies, controlling the most common risk factors and emphasizing on early detection and treatment of high risk infants.

    MicroRNAs signatures, bioinformatics analysis of miRNAs, miRNA mimics and antagonists, and miRNA therapeutics in osteosarcoma

    Get PDF
    MicroRNAs (miRNAs) involved in key signaling pathways and aggressive phenotypes of osteosarcoma (OS) was discussed, including PI3K/AKT/MTOR, MTOR AND RAF-1 signaling, tumor suppressor P53- linked miRNAs, NOTCH- related miRNAs, miRNA -15/16 cluster, apoptosis related miRNAs, invasion-metastasis-related miRNAs, and 14Q32-associated miRNAs cluster. Herrin, we discussed insights into the targeted therapies including miRNAs (i.e., tumor-suppressive miRNAs and oncomiRNAs). Using bioinformatics tools, the interaction network of all OS-associated miRNAs and their targets was also depicted. © 2020 The Author(s)

    Developmental disturbances associated with agenesis of the permanent maxillary lateral incisor

    Get PDF
    The aim of this study was to characterise the intra and extra-oral phenotype associated with agenesis of the permanent maxillary lateral incisor. We compared three groups: (1) subjects with agenesis of one or both permanent maxillary lateral incisors (n=80); (2) first and second degree relatives of group 1 with no agenesis of the permanent maxillary lateral incisor and (3) subjects with no agenesis of the maxillary lateral incisor or family history of it (n=49). For each of the 201 subjects detailed clinical information was reviewed and panoramic radiographs were analysed. Considering only the sample with unilateral agenesis, microdontia of the contralateral permanent maxillary lateral incisor was significantly more frequent in group 1 (82.4%) than in group 2 (25%) and the control group (2%). This supports the theory that microdontia is a variable expression of the same developmental disturbance that causes tooth agenesis. The absence of third molars occurred more often in group 1 (36.2%) than in groups 2 and 3 (18.6% and 18.9% respectively), confirming that agenesis of third molars was markedly associated with the agenesis of the permanent maxillary lateral incisor. Agenesis of teeth other than third molars was not significantly different among subjects with agenesis of the permanent maxillary lateral incisor and their relatives. The frequencies of supernumerary teeth, permanent maxillary canine impaction, general health condition and minor anomalies were not significantly different between the three groups

    Large Proteins Have a Great Tendency to Aggregate but a Low Propensity to Form Amyloid Fibrils

    Get PDF
    The assembly of soluble proteins into ordered fibrillar aggregates with cross-β structure is an essential event of many human diseases. The polypeptides undergoing aggregation are generally small in size. To explore if the small size is a primary determinant for the formation of amyloids under pathological conditions we have created two databases of proteins, forming amyloid-related and non-amyloid deposits in human diseases, respectively. The size distributions of the two protein populations are well separated, with the systems forming non-amyloid deposits appearing significantly larger. We have then investigated the propensity of the 486-residue hexokinase-B from Saccharomyces cerevisiae (YHKB) to form amyloid-like fibrils in vitro. This size is intermediate between the size distributions of amyloid and non-amyloid forming proteins. Aggregation was induced under conditions known to be most effective for amyloid formation by normally globular proteins: (i) low pH with salts, (ii) pH 5.5 with trifluoroethanol. In both situations YHKB aggregated very rapidly into species with significant β-sheet structure, as detected using circular dichroism and X-ray diffraction, but a weak Thioflavin T and Congo red binding. Moreover, atomic force microscopy indicated a morphology distinct from typical amyloid fibrils. Both types of aggregates were cytotoxic to human neuroblastoma cells, as indicated by the MTT assay. This analysis indicates that large proteins have a high tendency to form toxic aggregates, but low propensity to form regular amyloid in vivo and that such a behavior is intrinsically determined by the size of the protein, as suggested by the in vitro analysis of our sample protein

    Histidine-Rich Glycoprotein Protects from Systemic Candida Infection

    Get PDF
    Fungi, such as Candida spp., are commonly found on the skin and at mucosal surfaces. Yet, they rarely cause invasive infections in immunocompetent individuals, an observation reflecting the ability of our innate immune system to control potentially invasive microbes found at biological boundaries. Antimicrobial proteins and peptides are becoming increasingly recognized as important effectors of innate immunity. This is illustrated further by the present investigation, demonstrating a novel antifungal role of histidine-rich glycoprotein (HRG), an abundant and multimodular plasma protein. HRG bound to Candida cells, and induced breaks in the cell walls of the organisms. Correspondingly, HRG preferentially lysed ergosterol-containing liposomes but not cholesterol-containing ones, indicating a specificity for fungal versus other types of eukaryotic membranes. Both antifungal and membrane-rupturing activities of HRG were enhanced at low pH, and mapped to the histidine-rich region of the protein. Ex vivo, HRG-containing plasma as well as fibrin clots exerted antifungal effects. In vivo, Hrg−/− mice were susceptible to infection by C. albicans, in contrast to wild-type mice, which were highly resistant to infection. The results demonstrate a key and previously unknown antifungal role of HRG in innate immunity

    Influence of zinc on glycosaminoglycan neutralisation during coagulation

    Get PDF
    This work was supported by the British Heart Foundation (grant codes: PG/15/9/31270 and FS/15/42/31556). SJP is supported by a Royal Society of Edinburgh Biomedical Fellowship.Heparan sulfate (HS), dermatan sulfate (DS) and heparin are glycosaminoglycans (GAGs) that serve as key natural and pharmacological anticoagulants. During normal clotting such agents require to be inactivated or neutralised. Several proteins have been reported to facilitate their neutralisation, which reside in platelet α-granules and are released following platelet activation. These include histidine-rich-glycoprotein (HRG), fibrinogen and high-molecular-weight kininogen (HMWK). Zinc ions (Zn2+) are also present in α-granules at a high concentration and participate in the propagation of coagulation by influencing the binding of neutralising proteins to GAGs. Zn2+ in many cases increases the affinity of these proteins to GAGs, and is thus an important regulator of GAG neutralisation and haemostasis. Binding of Zn2+ to HRG, HMWK and fibrinogen is mediated predominantly through coordination to histidine residues but the mechanisms by which Zn2+ increases the affinity of the proteins for GAGs are not yet completely clear. Here we will review current knowledge of how Zn2+ binds to and influences the neutralisation of GAGs and describe the importance of this process in both normal and pathogenic clotting.Publisher PDFPeer reviewe

    Leukocyte antigen-related inhibition attenuates palmitate-induced insulin resistance in muscle cells

    Get PDF
    Palmitate has been shown to induce insulin resistance in skeletal muscle cells. The aim of this studywas to investigate the role of the leukocyte common antigen-related (LAR) gene in palmitate-induced insulin resistance in C2C12 cells. A stable C2C12 cell line was generated using LAR short hairpin RNA. The levels of LAR protein and phosphorylation of insulin receptor substrate-1 (IRS1) and Akt were detected by western blot analysis. 2-Deoxyglucose uptake was measured in LAR knockdown and control cells using D-2-H-3 glucose. LAR protein level was decreased by 65% in the stable cell line compared with the control cells. Palmitate (0.5 mM) significantly induced LAR mRNA (65%) and protein levels (40%) in myotubes compared with untreated cells. Palmitate significantly reduced insulin-stimulated glucose uptake in both the control and LAR knockdown cells by 33 and 51% respectively. However, LAR depletion improved insulin-stimulated glucose uptake in myotubes treated with palmitate. Furthermore, the inhibition of LAR prevented palmitate-induced decreases in phosphorylation of IRS1(Tyr632) and Akt(Ser473) in C2C12 cells. In conclusion, these results reveal that palmitate induces LAR expression in C2C12 cells. We also provided evidence that the inhibition of LAR attenuates palmitate-induced insulin resistance in myotubes. Journal of Endocrinology (2012) 215, 71-7

    Taurine Prevents Passive Avoidance Memory Impairment, Accumulation of Amyloid-β Plaques, and Neuronal Loss in the Hippocampus of Scopolamine-Treated Rats

    No full text
    One of the hallmarks of Alzheimer�s disease (AD) is extracellular deposition of amyloid-β peptides, particularly in the hippocampus. Despite the antioxidant properties of taurine, its neuroprotective potential against amyloid-β accumulation in scopolamine-induced AD model remain unclear. In such a model, we aimed to assess the effects of taurine on passive avoidance memory impairment, accumulation of congophilic amyloid-β plaques, and neuronal density in the rat hippocampus. Rats, except the control group, were i.p. injected with 3 mg/kg scopolamine. The pretreated and treated groups were also injected with taurine (25, 50, or 100 mg/kg/day, i.p.) for 14 days before or after scopolamine introduction. All rats (except the control group) were tested for the passive avoidance reaction 24 h after the last drug injection. For histological analysis, hippocampal sections were stained with Congo red and cresyl violet. Administration of taurine for 14 days, both before and after scopolamine injection, significantly alleviated passive avoidance memory impairment. Pretreatment with taurine in any of the mentioned dosages significantly decreased the number of congophilic amyloid-β plaques in the rat hippocampus, including the CA3 area. Taurine also reduced scopolamine-induced neuronal loss in the hippocampus. © 2019, Springer Science+Business Media, LLC, part of Springer Nature

    Taurine can decrease phosphorylated tau protein levels in alzheimer�s model rats� brains

    No full text
    Background Microtubule formation is a dynamic process and Tau proteins promote the assembly of tubulin monomers into microtubules. Hyperphosphorylation of some amino acids in tau proteins causes neuron starvation and finally cell death. Taurine is found in the brain and has neuroprotective effects. Objective Since the protective and therapeutic effects of Taurine on phosphorylated tau proteins level in the cerebellum and prefrontal cortex of rats induced by scopolamine have not been studied, we examined these effects. Method Adult male Wistar rats were randomly distributed into nine groups. For two weeks, Taurine-treated rats received different doses of Taurine (25, 50, and 100 mg/kg/ day) before or after scopolamine injection. The phosphorylated tau protein level in the cerebellum and prefrontal cortex was determined by the enzyme-linked immunosorbent assay (ELISA) technique. Result Pretreatment with three doses of Taurine significantly decreased the phosphorylated tau protein level that increased by scopolamine in the prefrontal cortex (p < 0.001), as well as the cerebellum (p < 0.001). Moreover, high-dose administration of Taurine (100 mg/kg/day) after scopolamine injection significantly decreased phosphorylated tau protein level in the cerebellum (p < 0.01), as well as the prefrontal cortex (p < 0.05). However, there was not any significant change in the level of phosphorylated tau protein after Taurine treatment (25 and 50 mg/kg/day) in the cerebellum and prefrontal cortex. Conclusion It can be concluded that Taurine could attenuate the increase in phosphorylated tau protein induced by scopolamine in the brain of rats and usage of Taurine as a pretreatment complement could be more useful in the protection of neurons. © 2021, Kathmandu University. All rights reserved
    corecore