582 research outputs found
Anomalous escape governed by thermal 1/f noise
We present an analytic study for subdiffusive escape of overdamped particles
out of a cusp-shaped parabolic potential well which are driven by thermal,
fractional Gaussian noise with a power spectrum. This
long-standing challenge becomes mathematically tractable by use of a
generalized Langevin dynamics via its corresponding non-Markovian,
time-convolutionless master equation: We find that the escape is governed
asymptotically by a power law whose exponent depends exponentially on the ratio
of barrier height and temperature. This result is in distinct contrast to a
description with a corresponding subdiffusive fractional Fokker-Planck
approach; thus providing experimentalists an amenable testbed to differentiate
between the two escape scenarios
An Integro-Differential Equation of the Fractional Form: Cauchy Problem and Solution
Producción CientÃficaWe solve the Cauchy problem defined by the fractional partial differential
equation [∂tt − κD]u = 0, with D the pseudo-differential Riesz operator of first
order, and certain initial conditions. The
solution of the Cauchy problem resulting from the substitution of the Gaussian pulse
u(x, 0) by the Dirac delta distribution ϕ(x) = μδ(x) is obtained as corollary.MINECO grant MTM2014-57129-C2-1-P
Fractional Fokker-Planck Equation for Ultraslow Kinetics
Several classes of physical systems exhibit ultraslow diffusion for which the
mean squared displacement at long times grows as a power of the logarithm of
time ("strong anomaly") and share the interesting property that the probability
distribution of particle's position at long times is a double-sided
exponential. We show that such behaviors can be adequately described by a
distributed-order fractional Fokker-Planck equations with a power-law
weighting-function. We discuss the equations and the properties of their
solutions, and connect this description with a scheme based on continuous-time
random walks
Some Insights in Superdiffusive Transport
In this paper we deal with high-order corrections for the Fractional
Derivative approach to anomalous diffusion, in super-diffusive regime, which
become relevand whenever one attempts to describe the behavior of particles
close to normal diffusion.Comment: 14 pages, 7 figure
Creep, Relaxation and Viscosity Properties for Basic Fractional Models in Rheology
The purpose of this paper is twofold: from one side we provide a general
survey to the viscoelastic models constructed via fractional calculus and from
the other side we intend to analyze the basic fractional models as far as their
creep, relaxation and viscosity properties are considered. The basic models are
those that generalize via derivatives of fractional order the classical
mechanical models characterized by two, three and four parameters, that we
refer to as Kelvin-Voigt, Maxwell, Zener, anti-Zener and Burgers. For each
fractional model we provide plots of the creep compliance, relaxation modulus
and effective viscosity in non dimensional form in terms of a suitable time
scale for different values of the order of fractional derivative. We also
discuss the role of the order of fractional derivative in modifying the
properties of the classical models.Comment: 41 pages, 8 figure
Dynamics with Low-Level Fractionality
The notion of fractional dynamics is related to equations of motion with one
or a few terms with derivatives of a fractional order. This type of equation
appears in the description of chaotic dynamics, wave propagation in fractal
media, and field theory. For the fractional linear oscillator the physical
meaning of the derivative of order is dissipation. In systems with
many spacially coupled elements (oscillators) the fractional derivative, along
the space coordinate, corresponds to a long range interaction. We discuss a
method of constructing a solution using an expansion in
with small and positive integer . The method is applied to the
fractional linear and nonlinear oscillators and to fractional Ginzburg-Landau
or parabolic equations.Comment: LaTeX, 24 pages, to be published in Physica
L\'evy-Schr\"odinger wave packets
We analyze the time--dependent solutions of the pseudo--differential
L\'evy--Schr\"odinger wave equation in the free case, and we compare them with
the associated L\'evy processes. We list the principal laws used to describe
the time evolutions of both the L\'evy process densities, and the
L\'evy--Schr\"odinger wave packets. To have self--adjoint generators and
unitary evolutions we will consider only absolutely continuous, infinitely
divisible L\'evy noises with laws symmetric under change of sign of the
independent variable. We then show several examples of the characteristic
behavior of the L\'evy--Schr\"odinger wave packets, and in particular of the
bi-modality arising in their evolutions: a feature at variance with the typical
diffusive uni--modality of both the L\'evy process densities, and the usual
Schr\"odinger wave functions.Comment: 41 pages, 13 figures; paper substantially shortened, while keeping
intact examples and results; changed format from "report" to "article";
eliminated Appendices B, C, F (old names); shifted Chapters 4 and 5 (old
numbers) from text to Appendices C, D (new names); introduced connection
between Relativistic q.m. laws and Generalized Hyperbolic law
Mesoscopic description of reactions under anomalous diffusion: A case study
Reaction-diffusion equations deliver a versatile tool for the description of
reactions in inhomogeneous systems under the assumption that the characteristic
reaction scales and the scales of the inhomogeneities in the reactant
concentrations separate. In the present work we discuss the possibilities of a
generalization of reaction-diffusion equations to the case of anomalous
diffusion described by continuous-time random walks with decoupled step length
and waiting time probability densities, the first being Gaussian or Levy, the
second one being an exponential or a power-law lacking the first moment. We
consider a special case of an irreversible or reversible A ->B conversion and
show that only in the Markovian case of an exponential waiting time
distribution the diffusion- and the reaction-term can be decoupled. In all
other cases, the properties of the reaction affect the transport operator, so
that the form of the corresponding reaction-anomalous diffusion equations does
not closely follow the form of the usual reaction-diffusion equations
Mixtures of compound Poisson processes as models of tick-by-tick financial data
A model for the phenomenological description of tick-by-tick share prices in
a stock exchange is introduced. It is based on mixtures of compound Poisson
processes. Preliminary results based on Monte Carlo simulation show that this
model can reproduce various stylized facts.Comment: 12 pages, 6 figures, to appear in a special issue of Chaos, Solitons
and Fractal
- …