8 research outputs found

    SARS-CoV-2 breakthrough infections among vaccinated individuals with rheumatic disease : Results from the COVID-19 Global Rheumatology Alliance provider registry

    Get PDF
    Funding Information: members of the COVID-19 Global Rheumatology Alliance and do not necessarily represent the views of the American College of Rheumatology (ACR), EULAR, the UK National Health Service (NHS), the National Institute for Health Research (NIHR), the UK Department of Health or any other organisation. Competing interests KLH reports she has received non-personal speaker’s fees from AbbVie and grant income from BMS, UCB and Pfizer, all unrelated to this manuscript; KLH is supported by the NIHR Manchester Biomedical Research Centre. LG reports personal consultant fees from AbbVie, Amgen, BMS, Biogen, Celgene, Gilead, Janssen, Lilly, Novartis, Pfizer, Samsung Bioepis, Sanofi-Aventis and UCB, and grants from Amgen, Lilly, Janssen, Pfizer, Sandoz, Sanofi and Galapagos, all unrelated to this manuscript. AS reports research grants from a consortium of 14 companies (among them AbbVie, BMS, Celltrion, Fresenius Funding Information: Kabi, Gilead/Galapagos, Lilly, Mylan/Viatris, Hexal, MSD, Pfizer, Roche, Samsung, Sanofi-Aventis and UCB) supporting the German RABBIT register and personal fees from lectures for AbbVie, MSD, Roche, BMS, Lilly and Pfizer, all unrelated to this manuscript. LC has not received fees or personal grants from any laboratory, but her institute works by contract for laboratories among other institutions, such as AbbVie Spain, Eisai, Gebro Pharma, Merck Sharp & Dohme España, Novartis Farmaceutica, Pfizer, Roche Farma, Sanofi-Aventis, Astellas Pharma, Actelion Pharmaceuticals España, Grünenthal and UCB Pharma. EF-M reports personal consultant fees from Boehringer Ingelheim Portugal and that LPCDR received support for specific activities: grants from AbbVie, Novartis, Janssen-Cilag, Lilly Portugal, Sanofi, Grünenthal, MSD, Celgene, Medac, Pharmakern and GAfPA; grants and non-financial support from Pfizer; and non-financial support from Grünenthal, outside the submitted work. IB reports personal consultant fees from AbbVie, Novartis, Pfizer and Janssen, all unrelated to this manuscript. JZ reports speaker fees from AbbVie, Novartis and Janssen/Johnson & Johnson, all unrelated to this manuscript. GR-C reports personal consultant fees from Eli Lilly and Novartis, all unrelated to this manuscript. JS is supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases (grant numbers: R01 AR077607, P30 AR070253 and P30 AR072577), and the R Bruce and Joan M Mickey Research Scholar Fund. JS has received research support from Amgen and Bristol Myers Squibb and performed consultancy for Bristol Myers Squibb, Gilead, Inova, Janssen and Optum, unrelated to this work. LW receives speaker’s bureau fees from Aurinia Pharma, unrelated to this manuscript. SB reports no competing interests related to this work. He reports non-branded consulting fees for AbbVie, Horizon and Novartis (all <10000).MGMhasnocompetinginterestsrelatedtothiswork.SheservesasapatientconsultantforBMS,BIJNJandAurinia(all<10 000). MGM has no competing interests related to this work. She serves as a patient consultant for BMS, BI JNJ and Aurinia (all <10 000). RG reports no competing interests related to this work. Outside of this work she reports personal and/or speaking fees from AbbVie, Janssen, Novartis, Pfizer and Cornerstones and travel assistance from Pfizer (all <10000).JHreportsnocompetinginterestsrelatedtothiswork.HeissupportedbygrantsfromtheRheumatologyResearchFoundationandhassalarysupportfromtheChildhoodArthritisandRheumatologyResearchAlliance.HehasperformedconsultingforNovartis,SobiandBiogen,allunrelatedtothiswork(<10 000). JH reports no competing interests related to this work. He is supported by grants from the Rheumatology Research Foundation and has salary support from the Childhood Arthritis and Rheumatology Research Alliance. He has performed consulting for Novartis, Sobi and Biogen, all unrelated to this work (<10 000). ESi reports non-financial support from Canadian Arthritis Patient Alliance, outside the submitted work. PS reports personal fees from the American College of Rheumatology/Wiley Publishing, outside the submitted work. ZW reports grant support from Bristol Myers Squibb and Principia/Sanofi and performed consultancy for Viela Bio and MedPace, outside the submitted work. His work is supported by grants from the National Institutes of Health. PMM has received consulting/speaker’s fees from AbbVie, BMS, Celgene, Eli Lilly, Galapagos, Janssen, MSD, Novartis, Orphazyme, Pfizer, Roche and UCB, all unrelated to this study. PMM is supported by the National Institute for Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research Centre (BRC). PCR reports no competing interests related to this work. Outside of this work PCR reports personal fees from AbbVie, Atom Bioscience, Eli Lilly, Gilead, GlaxoSmithKline, Janssen, Kukdong, Novartis, UCB, Roche and Pfizer; meeting attendance support from BMS, Pfizer and UCB; and grant funding from Janssen, Novartis, Pfizer and UCB Pharma (all <$10 000). JY reports no competing interests related to this work. Her work is supported by grants from the National Institutes of Health (K24 AR074534 and P30 AR070155). Outside of this work, she has received research grants or performed consulting for Gilead, BMS Foundation, Pfizer, Aurinia and AstraZeneca. Funding Information: Twitter Jean Liew @rheum_cat, Loreto Carmona @carmona_loreto, Pedro M Machado @pedrommcmachado and Philip C Robinson @philipcrobinson Contributors All authors contributed to the study design, data collection, interpretation of results and review/approval of the final submitted manuscript. JL and MG are guarantors for this manuscript. Funding MG reports grants from the National Institutes of Health, NIAMS, outside the submitted work. KLH is supported by the NIHR Manchester Biomedical Research Centre. JS is supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases (grant numbers: R01 AR077607, P30 AR070253 and P30 AR072577), and the R Bruce and Joan M Mickey Research Scholar Fund. JH is supported by grants from the Rheumatology Research Foundation. ZW is supported by grants from the National Institutes of Health. PMM is supported by the National Institute for Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research Centre (BRC). JY is supported by grants from the National Institutes of Health (K24 AR074534 and P30 AR070155). Publisher Copyright: ©Objective. While COVID-19 vaccination prevents severe infections, poor immunogenicity in immunocompromised people threatens vaccine effectiveness. We analysed the clinical characteristics of patients with rheumatic disease who developed breakthrough COVID-19 after vaccination against SARS-CoV-2.  Methods. We included people partially or fully vaccinated against SARS-CoV-2 who developed COVID-19 between 5 January and 30 September 2021 and were reported to the Global Rheumatology Alliance registry. Breakthrough infections were defined as occurring ≥14 days after completion of the vaccination series, specifically 14 days after the second dose in a two-dose series or 14 days after a single-dose vaccine. We analysed patients' demographic and clinical characteristics and COVID-19 symptoms and outcomes. Results SARS-CoV-2 infection was reported in 197 partially or fully vaccinated people with rheumatic disease (mean age 54 years, 77% female, 56% white). The majority (n=140/197, 71%) received messenger RNA vaccines. Among the fully vaccinated (n=87), infection occurred a mean of 112 (±60) days after the second vaccine dose. Among those fully vaccinated and hospitalised (n=22, age range 36-83 years), nine had used B cell-depleting therapy (BCDT), with six as monotherapy, at the time of vaccination. Three were on mycophenolate. The majority (n=14/22, 64%) were not taking systemic glucocorticoids. Eight patients had pre-existing lung disease and five patients died. Conclusion. More than half of fully vaccinated individuals with breakthrough infections requiring hospitalisation were on BCDT or mycophenolate. Further risk mitigation strategies are likely needed to protect this selected high-risk population.publishersversionPeer reviewe

    Prolonged COVID-19 symptom duration in people with systemic autoimmune rheumatic diseases: results from the COVID-19 Global Rheumatology Alliance Vaccine Survey

    Get PDF
    OBJECTIVE: We investigated prolonged COVID-19 symptom duration, defined as lasting 28 days or longer, among people with systemic autoimmune rheumatic diseases (SARDs). METHODS: We analysed data from the COVID-19 Global Rheumatology Alliance Vaccine Survey (2 April 2021-15 October 2021) to identify people with SARDs reporting test-confirmed COVID-19. Participants reported COVID-19 severity and symptom duration, sociodemographics and clinical characteristics. We reported the proportion experiencing prolonged symptom duration and investigated associations with baseline characteristics using logistic regression. RESULTS: We identified 441 respondents with SARDs and COVID-19 (mean age 48.2 years, 83.7% female, 39.5% rheumatoid arthritis). The median COVID-19 symptom duration was 15 days (IQR 7, 25). Overall, 107 (24.2%) respondents had prolonged symptom duration (≥28 days); 42/429 (9.8%) reported symptoms lasting ≥90 days. Factors associated with higher odds of prolonged symptom duration included: hospitalisation for COVID-19 vs not hospitalised and mild acute symptoms (age-adjusted OR (aOR) 6.49, 95% CI 3.03 to 14.1), comorbidity count (aOR 1.11 per comorbidity, 95% CI 1.02 to 1.21) and osteoarthritis (aOR 2.11, 95% CI 1.01 to 4.27). COVID-19 onset in 2021 vs June 2020 or earlier was associated with lower odds of prolonged symptom duration (aOR 0.42, 95% CI 0.21 to 0.81). CONCLUSION: Most people with SARDs had complete symptom resolution by day 15 after COVID-19 onset. However, about 1 in 4 experienced COVID-19 symptom duration 28 days or longer; 1 in 10 experienced symptoms 90 days or longer. Future studies are needed to investigate the possible relationships between immunomodulating medications, SARD type/flare, vaccine doses and novel viral variants with prolonged COVID-19 symptoms and other postacute sequelae of COVID-19 among people with SARDs

    Characteristics and Outcomes of People With Gout Hospitalized Due to COVID-19 : Data From the COVID-19 Global Rheumatology Alliance Physician-Reported Registry

    No full text
    Objective To describe people with gout who were diagnosed with coronavirus disease 2019 (COVID-19) and hospitalized and to characterize their outcomes. Methods Data on patients with gout hospitalized for COVID-19 between March 12, 2020, and October 25, 2021, were extracted from the COVID-19 Global Rheumatology Alliance registry. Descriptive statistics were used to describe the demographics, comorbidities, medication exposures, and COVID-19 outcomes including oxygenation or ventilation support and death. Results One hundred sixty-three patients with gout who developed COVID-19 and were hospitalized were included. The mean age was 63 years, and 85% were male. The majority of the group lived in the Western Pacific Region (35%) and North America (18%). Nearly half (46%) had two or more comorbidities, with hypertension (56%), cardiovascular disease (28%), diabetes mellitus (26%), chronic kidney disease (25%), and obesity (23%) being the most common. Glucocorticoids and colchicine were used pre-COVID-19 in 11% and 12% of the cohort, respectively. Over two thirds (68%) of the cohort required supplemental oxygen or ventilatory support during hospitalization. COVID-19-related death was reported in 16% of the overall cohort, with 73% of deaths documented in people with two or more comorbidities. Conclusion This cohort of people with gout and COVID-19 who were hospitalized had high frequencies of ventilatory support and death. This suggests that patients with gout who were hospitalized for COVID-19 may be at risk of poor outcomes, perhaps related to known risk factors for poor outcomes, such as age and presence of comorbidity

    Factors associated with severe COVID-19 in people with idiopathic inflammatory myopathy: results from the COVID-19 Global Rheumatology Alliance physician-reported registry.

    Get PDF
    ObjectivesTo investigate factors associated with severe COVID-19 in people with idiopathic inflammatory myopathy (IIM).MethodsDemographic data, clinical characteristics and COVID-19 outcome severity of adults with IIM were obtained from the COVID-19 Global Rheumatology Alliance physician-reported registry. A 3-point ordinal COVID-19 severity scale was defined: (1) no hospitalisation, (2) hospitalisation (and no death) and (3) death. ORs were estimated using multivariable ordinal logistic regression. Sensitivity analyses were performed using a 4-point ordinal scale: (1) no hospitalisation, (2) hospitalisation with no oxygen (and no death), (3) hospitalisation with oxygen/ventilation (and no death) and 4) death.ResultsOf 348 patients, 48% were not hospitalised, 39% were hospitalised (and did not die) and 13% died. Older age (OR=1.59/decade, 95% CI 1.31 to 1.91), high disease activity (OR=3.50, 95% CI 1.25 to 9.83; vs remission), ≥2 comorbidities (OR=2.63, 95% CI 1.39 to 4.98; vs none), prednisolone-equivalent dose &gt;7.5 mg/day (OR=2.40, 95% CI 1.09 to 5.28; vs no intake) and exposure to rituximab (OR=2.71, 95% CI 1.28 to 5.72; vs conventional synthetic disease-modifying antirheumatic drugs only) were independently associated with severe COVID-19. In addition to these variables, in the sensitivity analyses, male sex (OR range: 1.65-1.83; vs female) was also significantly associated with severe outcomes, while COVID-19 diagnosis after 1 October 2020 (OR range: 0.51-0.59; vs on/before 15 June 2020) was significantly associated with less severe outcomes, but these associations were not significant in the main model (OR=1.57, 95% CI 0.95 to 2.59; and OR=0.61, 95% CI 0.37 to 1.00; respectively).ConclusionsThis is the first large registry data on outcomes of COVID-19 in people with IIM. Older age, male sex, higher comorbidity burden, high disease activity, prednisolone-equivalent dose &gt;7.5 mg/day and rituximab exposure were associated with severe COVID-19. These findings will enable risk stratification and inform management decisions for patients with IIM

    Characteristics associated with poor COVID-19 outcomes in people with psoriasis, psoriatic arthritis and axial spondyloarthritis:data from the COVID-19 PsoProtect and Global Rheumatology Alliance physician-reported registries

    Get PDF
    Funding The study received support from the American College of Rheumatology (ACR) and European Alliance of Associations for Rheumatology (EULAR).OBJECTIVES: To investigate factors associated with severe COVID-19 in people with psoriasis (PsO), psoriatic arthritis (PsA) and axial spondyloarthritis (axSpA). METHODS: Demographic data, clinical characteristics and COVID-19 outcome severity of adults with PsO, PsA and axSpA were obtained from two international physician-reported registries. A three-point ordinal COVID-19 severity scale was defined: no hospitalisation, hospitalisation (and no death) and death. ORs were estimated using multivariable ordinal logistic regression. RESULTS: Of 5045 cases, 18.3% had PsO, 45.5% PsA and 36.3% axSpA. Most (83.6%) were not hospitalised, 14.6% were hospitalised and 1.8% died. Older age was non-linearly associated with COVID-19 severity. Male sex (OR 1.54, 95% CI 1.30 to 1.83), cardiovascular, respiratory, renal, metabolic and cancer comorbidities (ORs 1.25-2.89), moderate/high disease activity and/or glucocorticoid use (ORs 1.39-2.23, vs remission/low disease activity and no glucocorticoids) were associated with increased odds of severe COVID-19. Later pandemic time periods (ORs 0.42-0.52, vs until 15 June 2020), PsO (OR 0.49, 95% CI 0.37 to 0.65, vs PsA) and baseline exposure to TNFi, IL17i and IL-23i/IL-12+23i (OR 0.57, 95% CI 0.44 to 0.73; OR 0.62, 95% CI 0.45 to 0.87; OR 0.67, 95% CI 0.45 to 0.98; respectively; vs no disease-modifying antirheumatic drug) were associated with reduced odds of severe COVID-19. CONCLUSION: Older age, male sex, comorbidity burden, higher disease activity and glucocorticoid intake were associated with more severe COVID-19. Later pandemic time periods, PsO and exposure to TNFi, IL17i and IL-23i/IL-12+23i were associated with less severe COVID-19. These findings will enable risk stratification and inform management decisions for patients with PsO, PsA and axSpA during COVID-19 waves or similar future respiratory pandemics.publishersversionepub_ahead_of_prin

    Environmental and societal factors associated with COVID-19-related death in people with rheumatic disease: an observational study.

    Get PDF
    BackgroundDifferences in the distribution of individual-level clinical risk factors across regions do not fully explain the observed global disparities in COVID-19 outcomes. We aimed to investigate the associations between environmental and societal factors and country-level variations in mortality attributed to COVID-19 among people with rheumatic disease globally.MethodsIn this observational study, we derived individual-level data on adults (aged 18-99 years) with rheumatic disease and a confirmed status of their highest COVID-19 severity level from the COVID-19 Global Rheumatology Alliance (GRA) registry, collected between March 12, 2020, and Aug 27, 2021. Environmental and societal factors were obtained from publicly available sources. The primary endpoint was mortality attributed to COVID-19. We used a multivariable logistic regression to evaluate independent associations between environmental and societal factors and death, after controlling for individual-level risk factors. We used a series of nested mixed-effects models to establish whether environmental and societal factors sufficiently explained country-level variations in death.Findings14 044 patients from 23 countries were included in the analyses. 10 178 (72·5%) individuals were female and 3866 (27·5%) were male, with a mean age of 54·4 years (SD 15·6). Air pollution (odds ratio 1·10 per 10 μg/m3 [95% CI 1·01-1·17]; p=0·0105), proportion of the population aged 65 years or older (1·19 per 1% increase [1·10-1·30]; p&lt;0·0001), and population mobility (1·03 per 1% increase in number of visits to grocery and pharmacy stores [1·02-1·05]; p&lt;0·0001 and 1·02 per 1% increase in number of visits to workplaces [1·00-1·03]; p=0·032) were independently associated with higher odds of mortality. Number of hospital beds (0·94 per 1-unit increase per 1000 people [0·88-1·00]; p=0·046), human development index (0·65 per 0·1-unit increase [0·44-0·96]; p=0·032), government response stringency (0·83 per 10-unit increase in containment index [0·74-0·93]; p=0·0018), as well as follow-up time (0·78 per month [0·69-0·88]; p&lt;0·0001) were independently associated with lower odds of mortality. These factors sufficiently explained country-level variations in death attributable to COVID-19 (intraclass correlation coefficient 1·2% [0·1-9·5]; p=0·14).InterpretationOur findings highlight the importance of environmental and societal factors as potential explanations of the observed regional disparities in COVID-19 outcomes among people with rheumatic disease and lay foundation for a new research agenda to address these disparities.FundingAmerican College of Rheumatology and European Alliance of Associations for Rheumatology

    Environmental and societal factors associated with COVID-19-related death in people with rheumatic disease: an observational study

    No full text
    Published by Elsevier Ltd.Background: Differences in the distribution of individual-level clinical risk factors across regions do not fully explain the observed global disparities in COVID-19 outcomes. We aimed to investigate the associations between environmental and societal factors and country-level variations in mortality attributed to COVID-19 among people with rheumatic disease globally. Methods: In this observational study, we derived individual-level data on adults (aged 18-99 years) with rheumatic disease and a confirmed status of their highest COVID-19 severity level from the COVID-19 Global Rheumatology Alliance (GRA) registry, collected between March 12, 2020, and Aug 27, 2021. Environmental and societal factors were obtained from publicly available sources. The primary endpoint was mortality attributed to COVID-19. We used a multivariable logistic regression to evaluate independent associations between environmental and societal factors and death, after controlling for individual-level risk factors. We used a series of nested mixed-effects models to establish whether environmental and societal factors sufficiently explained country-level variations in death. Findings: 14 044 patients from 23 countries were included in the analyses. 10 178 (72·5%) individuals were female and 3866 (27·5%) were male, with a mean age of 54·4 years (SD 15·6). Air pollution (odds ratio 1·10 per 10 μg/m3 [95% CI 1·01-1·17]; p=0·0105), proportion of the population aged 65 years or older (1·19 per 1% increase [1·10-1·30]; p<0·0001), and population mobility (1·03 per 1% increase in number of visits to grocery and pharmacy stores [1·02-1·05]; p<0·0001 and 1·02 per 1% increase in number of visits to workplaces [1·00-1·03]; p=0·032) were independently associated with higher odds of mortality. Number of hospital beds (0·94 per 1-unit increase per 1000 people [0·88-1·00]; p=0·046), human development index (0·65 per 0·1-unit increase [0·44-0·96]; p=0·032), government response stringency (0·83 per 10-unit increase in containment index [0·74-0·93]; p=0·0018), as well as follow-up time (0·78 per month [0·69-0·88]; p<0·0001) were independently associated with lower odds of mortality. These factors sufficiently explained country-level variations in death attributable to COVID-19 (intraclass correlation coefficient 1·2% [0·1-9·5]; p=0·14). Interpretation: Our findings highlight the importance of environmental and societal factors as potential explanations of the observed regional disparities in COVID-19 outcomes among people with rheumatic disease and lay foundation for a new research agenda to address these disparities.MAG is supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases (grant numbers K01 AR070585 and K24 AR074534 [JY]). KDW is supported by the Department of Veterans Affairs and the Rheumatology Research Foundation Scientist Development award. JAS is supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases (grant numbers K23 AR069688, R03 AR075886, L30 AR066953, P30 AR070253, and P30 AR072577), the Rheumatology Research Foundation (K Supplement Award and R Bridge Award), the Brigham Research Institute, and the R. Bruce and Joan M. Mickey Research Scholar Fund. NJP is supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases (T32-AR-007258). AD-G is supported by grants from the Centers for Disease Control and Prevention and the Rheumatology Research Foundation. RH was supported by the Justus-Liebig University Giessen Clinician Scientist Program in Biomedical Research to work on this registry. JY is supported by grants from the National Institutes of Health (K24 AR074534 and P30 AR070155).info:eu-repo/semantics/publishedVersio
    corecore