715 research outputs found
Quantum saturation and condensation of excitons in CuO: a theoretical study
Recent experiments on high density excitons in CuO provide evidence for
degenerate quantum statistics and Bose-Einstein condensation of this nearly
ideal gas. We model the time dependence of this bosonic system including
exciton decay mechanisms, energy exchange with phonons, and interconversion
between ortho (triplet-state) and para (singlet-state) excitons, using
parameters for the excitonic decay, the coupling to acoustic and low-lying
optical phonons, Auger recombination, and ortho-para interconversion derived
from experiment. The single adjustable parameter in our model is the
optical-phonon cooling rate for Auger and laser-produced hot excitons. We show
that the orthoexcitons move along the phase boundary without crossing it (i.e.,
exhibit a ``quantum saturation''), as a consequence of the balance of entropy
changes due to cooling of excitons by phonons and heating by the non-radiative
Auger two-exciton recombination process. The Auger annihilation rate for
para-para collisions is much smaller than that for ortho-para and ortho-ortho
collisions, explaining why, under the given experimental conditions, the
paraexcitons condense while the orthoexcitons fail to do so.Comment: Revised to improve clarity and physical content 18 pages, revtex,
figures available from G. Kavoulakis, Physics Department, University of
Illinois, Urban
Electron spin coherence in semiconductors: Considerations for a spin-based solid state quantum computer architecture
We theoretically consider coherence times for spins in two quantum computer
architectures, where the qubit is the spin of an electron bound to a P donor
impurity in Si or within a GaAs quantum dot. We show that low temperature
decoherence is dominated by spin-spin interactions, through spectral diffusion
and dipolar flip-flop mechanisms. These contributions lead to 1-100 s
calculated spin coherence times for a wide range of parameters, much higher
than former estimates based on measurements.Comment: Role of the dipolar interaction clarified; Included discussion on the
approximations employed in the spectral diffusion calculation. Final version
to appear in Phys. Rev.
Auger decay of degenerate and Bose-condensed excitons in CuO
We study the non-radiative Auger decay of excitons in CuO, in which two
excitons scatter to an excited electron and hole. The exciton decay rate for
the direct and the phonon-assisted processes is calculated from first
principles; incorporating the band structure of the material leads to a
relatively shorter lifetime of the triplet state ortho excitons. We compare our
results with the Auger decay rate extracted from data on highly degenerate
triplet excitons and Bose-condensed singlet excitons in CuO.Comment: 15 pages, revtex, figures available from G. Kavoulaki
Quantum cellular automata quantum computing with endohedral fullerenes
We present a scheme to perform universal quantum computation using global
addressing techniques as applied to a physical system of endohedrally doped
fullerenes. The system consists of an ABAB linear array of Group V endohedrally
doped fullerenes. Each molecule spin site consists of a nuclear spin coupled
via a Hyperfine interaction to an electron spin. The electron spin of each
molecule is in a quartet ground state . Neighboring molecular electron
spins are coupled via a magnetic dipole interaction. We find that an
all-electron construction of a quantum cellular automata is frustrated due to
the degeneracy of the electronic transitions. However, we can construct a
quantum celluar automata quantum computing architecture using these molecules
by encoding the quantum information on the nuclear spins while using the
electron spins as a local bus. We deduce the NMR and ESR pulses required to
execute the basic cellular automata operation and obtain a rough figure of
merit for the the number of gate operations per decoherence time. We find that
this figure of merit compares well with other physical quantum computer
proposals. We argue that the proposed architecture meets well the first four
DiVincenzo criteria and we outline various routes towards meeting the fifth
criteria: qubit readout.Comment: 16 pages, Latex, 5 figures, See http://planck.thphys.may.ie/QIPDDF/
submitted to Phys. Rev.
First measurement of direct photoproduction on the proton
We report on the results of the first measurement of exclusive
meson photoproduction on protons for GeV and GeV. Data were collected with the CLAS detector at the Thomas
Jefferson National Accelerator Facility. The resonance was detected via its
decay in the channel by performing a partial wave analysis of the
reaction . Clear evidence of the meson
was found in the interference between and waves at GeV. The -wave differential cross section integrated in the mass range of
the was found to be a factor of 50 smaller than the cross section
for the meson. This is the first time the meson has been
measured in a photoproduction experiment
A Kinematically Complete Measurement of the Proton Structure Function F2 in the Resonance Region and Evaluation of Its Moments
We measured the inclusive electron-proton cross section in the nucleon
resonance region (W < 2.5 GeV) at momentum transfers Q**2 below 4.5 (GeV/c)**2
with the CLAS detector. The large acceptance of CLAS allowed for the first time
the measurement of the cross section in a large, contiguous two-dimensional
range of Q**2 and x, making it possible to perform an integration of the data
at fixed Q**2 over the whole significant x-interval. From these data we
extracted the structure function F2 and, by including other world data, we
studied the Q**2 evolution of its moments, Mn(Q**2), in order to estimate
higher twist contributions. The small statistical and systematic uncertainties
of the CLAS data allow a precise extraction of the higher twists and demand
significant improvements in theoretical predictions for a meaningful comparison
with new experimental results.Comment: revtex4 18 pp., 12 figure
Measurement of the Bottom contribution to non-photonic electron production in collisions at =200 GeV
The contribution of meson decays to non-photonic electrons, which are
mainly produced by the semi-leptonic decays of heavy flavor mesons, in
collisions at 200 GeV has been measured using azimuthal
correlations between non-photonic electrons and hadrons. The extracted
decay contribution is approximately 50% at a transverse momentum of GeV/. These measurements constrain the nuclear modification factor for
electrons from and meson decays. The result indicates that meson
production in heavy ion collisions is also suppressed at high .Comment: 6 pages, 4 figures, accepted by PR
Complete measurement of three-body photodisintegration of 3He for photon energies between 0.35 and 1.55 GeV
The three-body photodisintegration of 3He has been measured with the CLAS
detector at Jefferson Lab, using tagged photons of energies between 0.35 GeV
and 1.55 GeV. The large acceptance of the spectrometer allowed us for the first
time to cover a wide momentum and angular range for the two outgoing protons.
Three kinematic regions dominated by either two- or three-body contributions
have been distinguished and analyzed. The measured cross sections have been
compared with results of a theoretical model, which, in certain kinematic
ranges, have been found to be in reasonable agreement with the data.Comment: 22 pages, 25 eps figures, 2 tables, submitted to PRC. Modifications:
removed 2 figures, improvements on others, a few minor modifications to the
tex
Predicting substance use behavior among South African adolescents: The role of leisure experiences across time
Using seven waves of data, collected twice a year from the 8th through the 11th grades in a low-resource community in Cape Town, South Africa, we aimed to describe the developmental trends in three specific leisure experiences (leisure boredom, new leisure interests, and healthy leisure) and substance use (cigarettes, alcohol, and marijuana) behaviors and to investigate the ways in which changes in leisure experiences predict changes in substance use behaviors over time. Results indicated that adolescents’ substance use increased significantly across adolescence, but that leisure experiences remained fairly stable over time. We also found that adolescent leisure experiences predicted baseline substance use and that changes in leisure experiences predicted changes in substance use behaviors over time, with leisure boredom emerging as the most consistent and strongest predictor of alcohol, cigarette, and marijuana use. Implications for interventions that target time use and leisure experiences are discussed.Web of Scienc
Recommended from our members
A Collapse Surface for Perforated Plates with Triangular Patterns for Ligament Efficiencies Between 0.05 and 0.50
Collapse surfaces are developed for thick perforated plates containing a triangular penetration pattern with ligament efficiencies of 0.05, 0.10, 0.15, 0.2, 0.3, and 0.5 using elastic-perfectly plastic FEA analysis. The FEA data was fit to a fourth-order collapse function which is appropriate for the development of an equivalent solid elastic-perfectly plastic plasticity model for perforated plates with triangular penetration patterns. This type of model can be conveniently used to develop a limit load capability for perforated plate analysis. It was shown that the fourth-order function is reasonable for ligament efficiencies between 0.15 to 0.5. Comparing the fourth-order collapse function to FEA data suggests that an alternate collapse function is needed for ligament efficiencies less than 0.15. A linear interpolation method was shown to be appropriate for ligament efficiencies between 0.15 and 0.5
- …
