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ABSTRACT

Collapse surfaces are developed for thick
perforated plates containing a triangular
penetration pattem with ligament efficiencies of
0.05, 0.10, 0.15, 0.2, 0.3, and 0.5 using elastic-
perfectly plastic FEA analysis. The FEA data
was fit to a fourth-order collapse function which
is appropriate for the development of an
equivalent solid elastic-perfectly plastic
plasticity model for perforated plates with
triangular penetration patterns. This type of
model can be conveniently used to develop a
limit load capability for perforated plate
analysis. It was shown that the fourth-order
function is reasonable for ligament efficiencies
between 0.15 to 0.5. Comparing the fourth-
order collapse function to FEA data suggests
that an alternate collapse function is needed
for ligament efficiencies less than 0.15. A
linear interpolation method was shown to be
appropriate for ligament efficiencies between
0.15and 0.5.

INTRODUCTION

This paper extends the elastic-perfectly plastic
equivalent solid plate (EPP-EQS) analysis
method for the calculation of limit loads of flat
perforated plates to a wide range of ligament
efficiencies. The EPP-EQS model is based on
the fourth-order yield function, proposed by
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Reinhardt {1, 2). Gordon et. al. [3] and Jones
et. al. [4] used the fourth-order function to
develop a full elastic-plastic flow model
appropriate for implementation into
commercially available EPP-FEA programs.
The resulting elastic-perfectly plastic flow
model provides an equivalent solid elastic-
perfectly plastic (EQS-EPP) plasticity
formulation that is useful in calculating limit
loads for thick perforated plates with triangular

‘penetration pattemns.

Gordon et. al. [3] developed a fourth-order
collapse surface based on the assumption that
the penetration pattern is in a state of
generalized plane strain applicable to a single
ligament efficiency. This paper examines the
range over which the fourth-order collapse
function applies and provides coefficients for
the collapse function within that range. Using
generalized plane strain assumptions,
EPP-FEA models were used to develop
collapse surfaces for ligament efficiencies of
0.05, 0.10, 0.15, 0.20, 0.30, and 0.50. These
surfaces were used to assess the range of
ligament efficiencies over which it is
appropriate to use a fourth-order collapse
function.



NOMENCLATURE

P Distance between penetration
centers, mm

h Minimum ligament width, mm

u=hP Ligament efficiency

i, & Stress and strain components fori=
xX,Yy,zz,xy, MPa and mm/mm

o Tangential stress component at

penetration surface, MPa

So=uS, Effective yield stress of EQS
material, MPa

Sy Yield stress, MPa

M,Q,R, T Coefficients for fourth-order
collapse function

Y, Zy, Z; Out-of-plane constants for collapse
function _

E,v Young's modulus and Poisson’s
ratio of base metal

E*/E, v*  Equivalent solid effective elastic
constants

EQS Equivalent solid

EPP Elastic perfectly plastic

PROBLEM STATEMENT

Consider an infinite array of penetrations
arranged in an equilateral pattemn as shown in
Figure 1. If the penetrations are very small
compared to all other dimensions of the
structure, symmetry of the deformation of an
infinite array of such penetrations allows the
identification of a unit cell that can be used to
analyze the response of the pattern to general
far field loading. The unit cell is shown in
Figure 2. Limit load solutions are sought for
the unit cell for various ratios of loading along
the x and y axes. By determining the loads for
which any additional increment of load causes
plastic coliapse of the unit cell, a collapse
surface is obtained which is appropriate for
assessing the load interaction effects on the
limit load of a perforated plate.
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Figure 1. Triangular penetratfon pattern.

H = @P-dyP =P

Reinhardt [1, 2] demonstrated that a fourth-
order collapse function is the lowest order
collapse function that describes the behaviour
required by 60° symmetry of the equilaterial
array. This function is given by the equation

Oy ={%{M(an +0,)+00.-0,)’ +4cl )

+R(o, +0,)'[(6.-0,)" +472]
+T(c. -0 o, -0,) -12r 1}
+Y[ol -o_(0,+0,)]+3Z 1, +3Z,72}%

= S, (1M

Since the out-of-plane (z-direction) is treated in
the usual quadratic fashion, only the fourth-
order terms relating the in-plane collapse
behavior are considered in this paper.
Reinhardt [2] showed that it is convenient to
use the transform



s,} (o, +0,)/2

S0 ={(0 ~0,)/2 2)
1™

S3 -

so that the collapse surface in the plane of the
penetrations, with all out-of-plane stress =0, is

Cent =
[Ms} + O(s2+s1)? + Rs?(s2 +5) +

Ts,5,(s3-3s)1°® =8

o

@)

Gordon et. al. [3] and Jones et. al. [4)
developed an EPP flow mode! based on the
fourth-order function and presented numerical
results for a ligament efficiency of 0.32. The
purpose of this paper is to determine the range
of ligament efficiencies for which Equation (3)
is reasonable. Collapse surfaces are
determined for a broad range of ligament
efficiencies and the M, Q, R, and T coefficients
determined for each ligament efficiency. The
appropriateness of the fourth-order function is
then assessed by comparing the equation with
the actual FEA data.

Figure 2. Unit Cell.
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METHOD OF SOLUTION

The method which was utilized in this work
consists of the following steps:

1. Finite element models were developed for
unit cells with ligament efficiencies ranging
from 0.05 to 0.50.

2. Limit load solutions were obtained for each
of the unit cell models for numerous in-
plane load combinations.

3. For each of the unit cell models, a best-fit
curve was determined for the limit load
solutions, producing the coefficients M, Q,
RandT.

4. The M, Q, R, and T coefficients are then
used to predict the FEA data and the
appropriateness of Equation (3) is
assessed by graphical comparison.

5. Evaluate the table look-up method against
a known solution for a ligament efficiency
of 0.32.

Step 3 is carried out by first calculating the Q
term directly from the s; or 1,y case where s; =
s; = 0.0. The curve fitting function of the
MATHEMATICA [5] program is then used to
obtain a best-fit for the M, R, and T coefficients
so that Equation (3) matches the EPP-FEA
data defining the collapse surfaces for an
interaction of s, and s, with s; = 0.0.

MODEL DESCRIPTION

A basic two-dimensional (2D) generalized
plane strain EPP-FEA model is used to obtain
the collapse surfaces. The pitch was held
constant and set equal to one. The radius of
the penetration was varied to obtain the
various h/P models. Ligament efficiencies of
0.05, 0.10, 0.15, 0.20, 0.30, and 0.50 were
investigated. Young’s modulus and Poisson’s
ratio were chosen to be 26.0E+6 psi (179E+3
MPa) and 0.3, respectively. The yield strength



was taken to be S, = 0.002E. Since linear
geometry assumptions are used, the limit loads
are proportional to yield strength and the actual
value chosen is not important.

An elastic-perfectly plastic stress-strain curve
was used with ABAQUS [8] to obtain the 2D-
FEA solutions. The collapse load is defined in
these analyses as the load for which a small
increase in load produces a very large increase
in deflection so that the slope of load-deflection
curve approaches zero. Using linear geometry
(small-strain, small deformation formulations),
this load complies with the theoretical definition
of a lower bound limit load.

The FEA mesh is shown in Figure 3. There are

Figure 3. Explicit FEA Model.

a total of 576 bi-quadratic reduced integration
elements and 1857 nodes in each of the
models. The boundary conditions for the
normal loads or (ox,, 6,y) cases are shown in
Figure 4, Surfaces A-B and E-F have
symmetry boundary conditions —i.e., the
displacements normal to these surfaces are
zero and the forces tangential to them are
zero. Surface D-E has the displacement
components in the x direction constrained so
that they are all equal - i.e. the face can only
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translate uniformly in the x direction. Similarly,
surface B-C is constrained such that it can only
translate uniformly in the y direction. The
model is loaded by specifying the total forces,
F, and F,, on faces D-E and B-C respectively.
The equivalent solid stresses acting on the unit
cell are

G = 2Fd(3 P)
Gyy= 2F/P 4)

By varying F, and F,, a sufficient number of
load cases is run to develop a full surface in
quadrants one and four of the collapse
surface. Results in quadrants two and three
are obtained by reflection.

The boundary conditions for the shear case are
shown in Figure 5. The surfaces B-C and E-F
were constrained to displace 3, uniformly in the
tangential direction while surfaces D-E and A-B
displace 8, uniformly in the tangential direction
— as shown in Figure 5. Tangential displace-
ments were defined on surfaces A-B and E-F
while total tangential forces were defined on
surfaces B-C and D-E. This case allows for the
direct solution of the Q term by the equation

Q= [uSysy" )

where s; is the equivalent solid shear stress
that causes the unit cell to collapse due to the
shear loading (Figure 5). If F,, is the load on
surface D-E that causes the unit cell to
collapse, then s; in Equation (5) is

$3= 2F/(43 P) (6)



Figure 4. Boundary Conditions for F, and Fy

Case.
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.Figure 5. Boundary Conditions for F,, Case

MODEL VERIFICATION

Each of the FEA models was checked by first
obtaining elastic solutions and compairing the
equivalent solid plate effective constants for
the various ligament efficiencies against other
published results. Table 1 compares E*/E and
v* as a function of A/P to the values given in
Slot[7]. Additionally, the peak elastic stress on
the penetration surface is compared to Slot’s
[7] values to assure mesh adequacy. These"
values are also given in Table 1. Since the
analysis results are all within 1% of the
published values, it was judged that the mesh
was adequate and the boundary conditions
were applied properly for these modeis.



RESULTS

Figures 6,7, 8,9, 10 and 11 show the collapse
surfaces generated by the FEA results for the
six ligament efficiencies used in the study.
Tables 2 through 7 provide the data for the
collapse surfaces. The MATHEMATICA [5]
program is used to fit Equation (3) to the
collapse surface data, Tables 2 through 7, by
first calculating the Q term, Equation (5), to
match the ¢, case given in Table 8 for each
ligament efficiency. Coefficients M, R, and T
are then fit to the data points shown in the
figures. The coefficients M, R, and T are given
in Table 9.

The comparisons in Figures 6-11 suggest that
the fourth-order function is a reasonable fit to
the collapse surface for h/P > 0.15. For

h/P < 0.15, it appears that the fourth-order
function is not adequate to represent the
-surface.

The goal of this work is to utilize the general
flow theory developed by Jones et. al. [4] and
the coefficients developed here in a general
EQS-EPP algorithm for commercial programs
such as ABAQUS. This can be easily
accomplished by a tablular lcok-up method
with linear interpolation.

To demonstrate the accuracy of such a
procedure, consider a ligament efficiency of
0.32. Linear interpolation between the known
values of 0.30 and 0.5 gives the coefficients of

M = 0.53890
Q= 12517
R = 3.6261 @)
T = 8.5819

Gordon et. al. [3] obtained the following
coefficients by fitting the collapse surface
resulting from a unit cell with a ligament
efficiency of 0.32:
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M= 0.52971
Q=11.86453
R= 3.96229 (8)
T= 7.57493

There is very little difference in these
coefficients thus validating the proposed linear
interpolating procedure. The actual FEA
collapse surface was obtained by Gordon et.
al. (3] and the data is compared to the
approximate surface in Figure 12. Using the
coefficients of Equation (7), Equation (3) is
11% conservative relative to the FEA data. The
largest error occurs in quadrants 2 and 4.

CONCLUSIONS

Collapse surfaces are developed for thick
perforated plates containing a triangular
penetration pattem with ligament efficiencies of
0.05, 0.10, 0.15, 0.2, 0.3, and 0.5 using elastic-
perfectly plastic FEA analysis. The FEA data
was fit to a fourth-order collapse function and
the resulting fitted curves compared to the
original data. Based on this work, the following
conciusions are drawn:

» The fourth-order yield function is a
reasonable fit to the FEA data for
0.15<h/P < 0.50.

o The fourth-order yield function appears to
be unable to reproduce the shape of the
collapse surface for h/P <0.15. An
alternate formulation is thought to be
appropriate for this range.

o A table look-up method with linear
interpolation is a reasonable way to obtain

“the coefficients for the fourth-order function
for 0.15 <h/P <0.50. This method
produced a surface with an 11% maximum
deviation from FEA data for h/P = 0.32.
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Table 3. Collapse data for A/P = 0.10.

WP EE o 75, @ |

30°
0.05FEA 00772 08078 1744
0.05Slot 00172 08078  17.53
0.10 FEA 0.0521 06606  11.92
0.10 Slot 0.0520 06606  11.92
0.15FEA 0.0994 05444 8782
0.15Slot 0.0994 05445  8.790
0.20 FEA 0.1553 04574  6.834
0.20 Slot 0.1553 04575  6.844
0.30 FEA 02805  0.3541  4.639
0.30 Slot 02806  0.3540  4.654
0.50 FEA 05447 02992  2.790
0.50 Slot 0.5446  0.2994  2.841

Table 2. Collapse data for /P = 0.05.

Case o, S
1 0.679053 1.176154
2 0 0.681231
3 0.626647 0
4 0.251503 -0.43562
5 0.25963 0.899231
6 0.157084 0.816154
7 1.183568 1.024615
8 0.720355 0.124769
9 0.835826 0.289538
10 0.972169 0.505077
11 1.107624 0.767308
12 1.162695 1.208462
13 0.99704 1.208462
14 0.872243 1.208462
15 0.775426 1.208462
16 1.197336 1.089231
17 1.209327 1.151538
18 1.21288 1.208462

_Case oo/ 55y o/ 1y
1 0 0.931154
2 0.810955 0
3 0.709031 1.228077
4 0.345966 -0.61077
5 1.199112 1.038462
6 0.340193 1.178846
7 0.210733 1.095
8 1.001037 0.346923
9 1.142487 0.791538
10 1.181792 1.228077
11 0.886233 1.228077
12 0.212754 -0.73692
13 -0.39437 0.546538
14 0.152976 ~0.795
15 0.655515 -0.22704
16 0.540933 -0.37481
17 0.457217 -0.47538

Full collapse surface obtained by symmetry.

Table 4. Collapse data for /P =0.15.

Full collapse surface obtained by symmetry.
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Case ol Sy o/ sy :
1 0 1.061538 |
2 0.881273 -0
3 0.725833 1.257179
4 0.397187 -0.68795
5 1.225907 1.061795
6 0.362842 1.256923
7 0.235233 1.222308
8 1.032865 0.357692
9 1.16758 0.808974
10 1.209623 1.257179
11 0.90718 1.257179
12 0.244412 -0.84692
13 0.175574 -0.91256
14 0.731754 -0.25351
15 0.61288 -0.42462
16 0.521688 -0.54205
17 0.451666 -0.6259
18 1.252554 1.193333

“Full collapse surface obtained by symmetry.
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Table 6. Collapse data for /P = 0.30.
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Case O/ 1Sy /1Sy O/ I5Sy Oy/ 1Sy
1 0 1.124808 1 0 1.188077
2 0 -1.12481 2 0.940267 0
3 -0.908105 0 3 0.786529 1.362308
4 0.747558 1.294808 4 0.447817 -0.77564
5 0.422354. -0.73154 5 1.259956 1.091154
6 0.93453 1.295 6 0 -1.18808
7 1.202665 1.249808 7 0.394967 1.368333
8 1.25718 1.088654 8 0.257217 1.336538
9 1.194116 0.827308 9 0.629534 -0.54526
10 1.125611 0.584808 10 1.094301 0.379103
11 1.053886 0.365 11 1.254627 0.869231
12 0.373834 1.295 12 1.166396 1.212179
13 - 0.246373 1.28 13 0.955589 1.324103
14 1.140711 1.284231 14 0.27624 -0.95705
15 1.068098 1.295 15 0.19815 -1.02948
16 0.996928 1.295 16 0.800296 -0.27718
17 0.830718 1.295 17 0.680459 -0.47141
18 0.598113 1.2985 18 0.584234 -0.60718
19 0.498409 1.294808 19 0.508142 -0.7041
20 0.427239 1.294808 Full collapse surface obtained by symmetry.
Full collapse surface obtained by symmetry.
Fgure 6. Coliapse Surface for WP =0.05 .. Figre. Collapse SufaceforhP=010 ;
o |
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Table 7. Collapse data for h/P = 0.50.

Case O/ iSy_ o/ ESy
1 0.787728 1.364385
2 1.313783 0.910231
3 0.468808 -0.812
4 0 1.243615
5 1.003479 0
6 0.260607 1.354154
7 0.398238 1.379538
8 0.65929 -0.57092
9 1.098253 0.190231
10 1.203331 0.416846
11 1.314049 0.682769
12 1.245122 1.078308
13 1.147772 1.192769
14 1.045004 1.267
15 0.948942 1.314923
16 0.863005 1.345308
17 0.289297 -1.00215
18 0.20758 -1.07854
19 0.841999 -0.29169
20 0.713028 -0.494
21 0.611769 -0.63577
22 0.532184 -0.73746

Full collapse surface obtained by symmetry.

sigyy/S0

Figure 8. Collapse Surface for /P =
0.15
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Table 8. Collapse data for shear case.

h/P Coefficient Q
0.05 125.375
0.10 34.862
0.15 20.096
0.20 15.564
0.30 12.777
0.50 10.185

nlgyy/80

Fguse 8. Collapse Surface for /P = 0.20

L4

*Eq. Q)
BFEA Data

Figure 10. Coflapse Surface for WP =

slyyy/ADn

0.30

®Eq.(3)
MFEA Data
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’ sigyy/SO

Figure 11. Collapse Surface for h/P = 0.50

*Eq. (3) |
BFEA Data

slgyy/S0

Figure 12 Collapse Surface for /P = 0.32

¢ 'Eq(7) Coeff
B FEAData
—&— Gordon,et.al.

Table 9. All coefficients as function of h/P.

h/P M Q R T
0.05 0.57056 125.375 5.2295 25.843
0.10 0.61810 34.862 3.9838 14.710
0.15 0.51872 20.096 5.2035 11.981
0.20 0.50052 15.564 6.3047 11.344
0.30 0.53590 12.777 3.7841 8.8850
0.50 0.56594 10.185 2.2037 5.8536
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