2,604 research outputs found
StreamIt: A Language and Compiler for Communication-Exposed Architectures
With the increasing miniaturization of transistors, wire delays are becoming a dominant factor in microprocessor performance. To address this issue, a number of emerging architectures contain replicated processing units with software-exposed communication between one unit and another (e.g., Raw, SmartMemories, TRIPS). However, for their use to be widespread, it will be necesary to develop a common machine language to allow programmers to express an algorithm in a way that can be efficiently mapped across these architectures. We propose a new common machine language for grid-based software-exposed architectures: StreamIt. StreamIt is a high-level programming language with explicit support for streaming computation. Unlike sequential programs with obscured dependence information and complex communication patterns, a stream program is naturally written as a set of concurrent filters with regular steady-state communication. The language imposes a hierarchical structure on the stream graph that enables novel representations and optimizations within the StreamIt compiler. We have implemented a fully functional compiler that parallelizes StreamIt applications for Raw, including several load-balancing transformations. Though StreamIt exposes the parallelism and communication patterns of stream programs, analysis is needed to adapt a stream program to a software-exposed processor. We describe a partitioning algorithm that employs fission and fusion transformations to adjust the granularity of a stream graph, a layout algorithm that maps a stream graph to a given network topology, and a scheduling strategy that generates a fine-grained static communication pattern for each computational element. Using the cycle-accurate Raw simulator, we demonstrate that the StreamIt compiler can automatically map a high-level stream abstraction to Raw. We consider this work to be a first step towards a portable programming model for communication-exposed architectures.Singapore-MIT Alliance (SMA
Resource frugal optimizer for quantum machine learning
Quantum-enhanced data science, also known as quantum machine learning (QML),
is of growing interest as an application of near-term quantum computers.
Variational QML algorithms have the potential to solve practical problems on
real hardware, particularly when involving quantum data. However, training
these algorithms can be challenging and calls for tailored optimization
procedures. Specifically, QML applications can require a large shot-count
overhead due to the large datasets involved. In this work, we advocate for
simultaneous random sampling over both the dataset as well as the measurement
operators that define the loss function. We consider a highly general loss
function that encompasses many QML applications, and we show how to construct
an unbiased estimator of its gradient. This allows us to propose a shot-frugal
gradient descent optimizer called Refoqus (REsource Frugal Optimizer for
QUantum Stochastic gradient descent). Our numerics indicate that Refoqus can
save several orders of magnitude in shot cost, even relative to optimizers that
sample over measurement operators alone.Comment: 22 pages, 6 figures - extra quantum autoencoder results adde
The relationship between the firm's social media strategy and the consumers' engagement behavior in aviation
acceptedVersio
Species richness estimation of the Afrotropical Darwin wasps (Hymenoptera, Ichneumonidae).
Species richness is one of the fundamental metrics of biodiversity. Estimating species richness helps spotlight taxonomic groups that are particularly under-studied, such as the highly diverse Darwin wasps. The only available estimate of the number of Darwin wasps in the Afrotropics proposed almost 11,000 species, compared to the 2,322 recorded species. However, it relied exclusively on the ratio of morphospecies to described species in Henry Townes' personal collection. We provide an updated estimate of the Afrotropical Darwin wasp species, using empirical data from multiple sources, including the increase in species numbers following generic revisions, morphospecies sorting in natural history collections, and diversity patterns of better-studied insects (butterflies) for extrapolation. Our analyses suggest that our knowledge of Darwin wasps is highly incomplete, with only 13-22% of species known in the five most extensively studied countries in the Afrotropics. We estimate 9,206-15,577 species of Darwin wasps within the entire Afrotropics, with the highest concentration expected in the Equatorial Afrotropics and Madagascar. Due to data constraints, our approach tends to underestimate diversity at each step, rendering the upper estimate (15,577 species) more realistic. We highlight reasons contributing to the gap between recorded and estimated species richness, including logistical and financial factors, as well as post-colonial influences
Unveiling gender differences in psychophysiological dynamics: support for a two-dimensional autonomic space approach
IntroductionTo date, studies focusing on the connection between psychological functioning and autonomic nervous system (ANS) activity usually adopted the one-dimensional model of autonomic balance, according to which activation of one branch of the ANS is accompanied by an inhibition of the other. However, the sympathetic and parasympathetic branches also activate independently; thus, co-activation and co-inhibition may occur, which is demonstrated by a two-dimensional model of ANS activity. Here, we apply such models to assess how markers of the autonomic space relate to several critical psychological constructs: emotional contagion (EC), general anxiety, and positive and negative affect (PA and NA). We also examined gender differences in those psychophysiological relations.MethodsIn the present study, we analyzed data from 408 healthy students, who underwent a 5-min group baseline period as part of their participation in several experiments and completed self-reported questionnaires. Electrocardiogram (ECG), electrodermal activity (EDA), and respiration were recorded. Respiratory sinus arrhythmia (RSA), pre-ejection period (PEP), as well as cardiac autonomic balance (CAB) and regulation (CAR) and cross-system autonomic balance (CSAB) and regulation (CSAR), were calculated.ResultsNotably, two-dimensional models were more suitable for predicting and describing most psychological constructs. Gender differences were found in psychological and physiological aspects as well as in psychophysiological relations. Women's EC scores were negatively correlated with sympathetic activity and positively linked to parasympathetic dominance. Men's PA and NA scores were positively associated with sympathetic activity. PA in men also had a positive link to an overall activation of the ANS, and a negative link to parasympathetic dominance.DiscussionThe current results expand our understanding of the psychological aspects of the autonomic space model and psychophysiological associations. Gender differences and strengths and weaknesses of alternative physiological models are discussed
Evidence and Ideology in Macroeconomics: The Case of Investment Cycles
The paper reports the principal findings of a long term research project on the description and explanation of business cycles. The research strongly confirmed the older view that business cycles have large systematic components that take the form of investment cycles. These quasi-periodic movements can be represented as low order, stochastic, dynamic processes with complex eigenvalues. Specifically, there is a fixed investment cycle of about 8 years and an inventory cycle of about 4 years. Maximum entropy spectral analysis was employed for the description of the cycles and continuous time econometrics for the explanatory models. The central explanatory mechanism is the second order accelerator, which incorporates adjustment costs both in relation to the capital stock and the rate of investment. By means of parametric resonance it was possible to show, both theoretically and empirically how cycles aggregate from the micro to the macro level. The same mathematical tool was also used to explain the international convergence of cycles. I argue that the theory of investment cycles was abandoned for ideological, not for evidential reasons. Methodological issues are also discussed
Ivabradine in Stable Coronary Artery Disease without Clinical Heart Failure
International audienceAn elevated heart rate is an established marker of cardiovascular risk. Previous analyses have suggested that ivabradine, a heart-rate-reducing agent, may improve outcomes in patients with stable coronary artery disease, left ventricular dysfunction, and a heart rate of 70 beats per minute or more. We conducted a randomized, double-blind, placebo-controlled trial of ivabradine, added to standard background therapy, in 19,102 patients who had both stable coronary artery disease without clinical heart failure and a heart rate of 70 beats per minute or more (including 12,049 patients with activity-limiting angina [class â„II on the Canadian Cardiovascular Society scale, which ranges from I to IV, with higher classes indicating greater limitations on physical activity owing to angina]). We randomly assigned patients to placebo or ivabradine, at a dose of up to 10 mg twice daily, with the dose adjusted to achieve a target heart rate of 55 to 60 beats per minute. The primary end point was a composite of death from cardiovascular causes or nonfatal myocardial infarction. At 3 months, the mean (±SD) heart rate of the patients was 60.7±9.0 beats per minute in the ivabradine group versus 70.6±10.1 beats per minute in the placebo group. After a median follow-up of 27.8 months, there was no significant difference between the ivabradine group and the placebo group in the incidence of the primary end point (6.8% and 6.4%, respectively; hazard ratio, 1.08; 95% confidence interval, 0.96 to 1.20; P=0.20), nor were there significant differences in the incidences of death from cardiovascular causes and nonfatal myocardial infarction. Ivabradine was associated with an increase in the incidence of the primary end point among patients with activity-limiting angina but not among those without activity-limiting angina (P=0.02 for interaction). The incidence of bradycardia was higher with ivabradine than with placebo (18.0% vs. 2.3%, P<0.001). Among patients who had stable coronary artery disease without clinical heart failure, the addition of ivabradine to standard background therapy to reduce the heart rate did not improve outcomes. (Funded by Servier; SIGNIFY Current Controlled Trials number, ISRCTN61576291.)
Monothiatruxene-Based, Solution-Processed Green, Sky-Blue, and Deep-Blue Organic Light-Emitting Diodes with Efficiencies Beyond 5% Limit
The authors thank the Mazowieckie voivodeship, cofinanced with the European Union funds by the European Social Fund and European Union's Horizon 2020 Research and Innovation Programme H2020âMSCAâIFâ2014â659237 for financial support. The authors thank Dr. Gary Nichol for the crystallographic data collection and refinement; The University of Edinburgh for funding the diffractometer purchase. I.D.W.S. acknowledges support from a Royal Society Wolfson Research Merit Award and from the Engineering and Physical Sciences Research Council (grant EP/J009016/1).The development of blue materials with good efficiency, even at high brightness, with excellent color purity, simple processing, and high thermal stability assuring adequate device lifetime is an important remaining challenge for organic lightâemitting didoes (OLEDs) in displays and lightning applications. Furthermore, these various features are typically mutually exclusive in practice. Herein, four novel green and blue lightâemitting materials based on a monothiatruxene core are reported together with their photophysical and thermal properties, and performance in solutionâprocessed OLEDs. The materials show excellent thermal properties with high glass transition temperatures ranging from 171 to 336 °C and decomposition temperatures from 352 to 442 °C. High external quantum efficiencies of 3.7% for a deepâblue emitter with CIE color coâordinates (0.16, 0.09) and 7% for green emitter with color coâordinates (0.22, 0.40) are achieved at 100 cd mâ2. The efficiencies observed are exceptionally high for fluorescent materials with photoluminescence quantum yields of 24% and 62%, respectively. The performance at higher brightness is very good with only 38% and 17% efficiency rollâoffs at 1000 cd mâ2. The results indicate that utilization of this unique molecular design is promising for efficient deepâblue highly stable and soluble lightâemitting materials.PostprintPeer reviewe
Directional ballistic transport in the two-dimensional metal PdCoO2
This project was supported by the Max Planck Society and the European Research Council (ERC) under the European Unionâs Horizon 2020 research and innovation programme (MiTopMat, grant agreement no. 715730). M.D.B. and P.H.M. acknowledge EPSRC for PhD studentship support through grant number EP/L015110/1. Research in Dresden benefits from the environment of the Excellence Cluster ct.qmat. A.S. acknowledges support from an ARCS Foundation Fellowship, a Ford Foundation Predoctoral Fellowship and a National Science Foundation Graduate Research Fellowship. A.S. would thanks Z. Gomez and E. Huang for helpful discussions and T. Devereaux for letting us use his group cluster. Computational work was performed on the Sherlock cluster at Stanford University and on resources of the National Energy Research Scientific Computing Center, supported by the DOE under contract DE_AC02-05CH11231. T.S. acknowledges support from the Emergent Phenomena in Quantum Systems initiative of the Gordon and Betty Moore Foundation, and from the Natural Sciences and Engineering Research Council of Canada (NSERC), in particular the Discovery Grant (RGPIN-2020-05842), Accelerator Supplement (RGPAS-2020-00060) and Discovery Launch Supplement (DGECR-2020-00222). T.S. contributed to this work prior to joining AWS. D.G.-G.âs and A.W.B.âs involvement in calculations was supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division under contract DE-AC02-76SF00515. E.Z. and M.M. thank the International Max Planck Research School for Chemistry and Physics of Quantum Materials (IMPRS-CPQM) for financial support. G.B. and D.A.B. acknowledge support from the Natural Sciences and Engineering Research Council of Canada (NSERC Discovery Grant RGPIN-2018-04280) and from the Canada First Research Excellence Fund.In an idealized infinite crystal, the material properties are constrained by the symmetries of the unit cell. The point-group symmetry is broken by the sample shape of any finite crystal, but this is commonly unobservable in macroscopic metals. To sense the shape-induced symmetry lowering in such metals, long-lived bulk states originating from an anisotropic Fermi surface are needed. Here we show how a strongly facetted Fermi surface and the long quasiparticle mean free path present in microstructures of PdCoO2 yield an in-plane resistivity anisotropy that is forbidden by symmetry on an infinite hexagonal lattice. We fabricate bar-shaped transport devices narrower than the mean free path from single crystals using focused ion beam milling, such that the ballistic charge carriers at low temperatures frequently collide with both of the side walls that define the channel. Two symmetry-forbidden transport signatures appear: the in-plane resistivity anisotropy exceeds a factor of 2, and a transverse voltage appears in zero magnetic field. Using ballistic Monte Carlo simulations and a numerical solution of the Boltzmann equation, we identify the orientation of the narrow channel as the source of symmetry breaking.Publisher PDFPeer reviewe
- âŠ