88 research outputs found

    Detailed gravity anomalies from GEOS-3 satellite altimetry data

    Get PDF
    A technique for deriving mean gravity anomalies from dense altimetry data was developed. A combination of both deterministic and statistical techniques was used. The basic mathematical model was based on the Stokes' equation which describes the analytical relationship between mean gravity anomalies and geoid undulations at a point; this undulation is a linear function of the altimetry data at that point. The overdetermined problem resulting from the excessive altimetry data available was solved using Least-Squares principles. These principles enable the simultaneous estimation of the associated standard deviations reflecting the internal consistency based on the accuracy estimates provided for the altimetry data as well as for the terrestrial anomaly data. Several test computations were made of the anomalies and their accuracy estimates using GOES-3 data

    The significance of the Skylab altimeter experiment results and potential applications

    Get PDF
    The Skylab Altimeter Experiment has proven the capability of the altimeter for measurement of sea surface topography. The geometric determination of the geoid/mean sea level from satellite altimetry is a new approach having significant applications in many disciplines including geodesy and oceanography. A Generalized Least Squares Collocation Technique was developed for determination of the geoid from altimetry data. The technique solves for the altimetry geoid and determines one bias term for the combined effect of sea state, orbit, tides, geoid, and instrument error using sparse ground truth data. The influence of errors in orbit and a priori geoid values are discussed. Although the Skylab altimeter instrument accuracy is about + or - 1 m, significant results were obtained in identification of large geoidal features such as over the Puerto Rico trench. Comparison of the results of several passes shows that good agreement exists between the general slopes of the altimeter geoid and the ground truth, and that the altimeter appears to be capable of providing more details than are now available with best known geoids. The altimetry geoidal profiles show excellent correlations with bathymetry and gravity. Potential applications of altimetry results to geodesy, oceanography, and geophysics are discussed

    Calibration and evaluation of Skylab altimetry for geodetic determination of the geoid

    Get PDF
    There are no author-identified significant results in this report

    Improved ground truth geoid for the GEOS-3 calibration area

    Get PDF
    The purpose of this investigation is to develop methods and procedures are reported for computing a detailed geoid to be used as geodetic ground truth for the calibration and verification of GEOS-3 altimeter data. The technique developed is based on rectifying the best available detailed geoid so that the rectified geoid will have correct scale, orientation, shape and position with respect to the geocenter. The approach involved the development of a mathematical model based on a second degree polynomial, in rectangular Cartesian coordinates, describing the geoid undulations at the control stations. A generalized least squares solution was obtained for the polynomial which describes the variation of the undulation differences between the control stations geoid and the gravimetric geoid. Three rectified geoid were determined. These geoids correspond to three sets of tracking station data: (1) WFC/C-band data; (2) GSFC/C-band data; and (3) OSU-275 data. The absolute accuracy of these rectified geoids is linearly correlated with the uncertainties of the tracking station coordinates and, to a certain extent, with those of the detailed geoid being rectified

    ZAGREB INDICES OF A NEW SUM OF GRAPHS

    Get PDF
    The first and second Zagreb indices, since its inception have been subjected to an extensive research in the physio- chemical analysis of compounds. In [6] Hanyuan Deng et.al computed the first and second Zagreb indices of four new operations on a graph defined by M. Eliasi, B. Taeri in [4]. Motivated from this we define a new operation on graphs and compute the first and second Zagreb indices of the resultant graph. We illustrate the results with some examples

    Calibration and evaluation of Skylab altimetry for geodetic determination of the geoid

    Get PDF
    There are no author-identified significant results in this report

    The application of Skylab altimetry to marine geoid determination

    Get PDF
    The author had identified the following significant results. The major results can be divided broadly into two groups. One group is concerned with the effects of errors inherent in the various input data, such as the orbit emphemeris, a priori geoid etc. The other consists of the results of the actual analysis of the data from the Skylab EREP passes 4, 6, 7, and 9. Results from the first group were obtained from the analysis of some preliminary data from EREP pass 9 mode 5. The second group of results consists of a set of recovered bias terms for each of the submodes of observations and a set of nine altimetry geoid profiles corresponding to the various passes and modes. Along with each of these profiles, the a priori geoid, gravity anomaly, and the bathymetric data profiles are also presented for easy comparison

    Calibration and evaluation of Skylab altimetry for geodetic determination of the geoid

    Get PDF
    The author has identified the following significant results. The Skylab altimeter experiment has proven the capability of the altimeter for measurement of sea surface topography. The geometric determination of the geoid/mean sea level from satellite altimetry is a new approach having significant applications in many disciplines including geodesy and oceanography. A generalized least squares collocation technique was developed for determination of the geoid from altimetry data. The technique solves for the altimetry geoid and determines one bias term for the combined effect of sea state, orbit, tides, geoid, and instrument error using sparse ground truth data. The influence of errors in orbit and a priori geoid values are discussed. Although the Skylab altimeter instrument accuracy is about plus or minus 1m, significant results were obtained in identification of large geoidal features such as over the Puerto Rico trench. Comparison of the results of several passes shows that good agreement exists between the general slopes of the altimeter geoid and the ground truth, and that the altimeter appears to be capable of providing more details than are now available with best known geoids

    On the distance spectra of some graphs

    Get PDF
    The D-eigenvalues of a connected graph G are the eigenvalues of its distance matrix D, and form the D-spectrum of G. The D-energy E_{D}(G) of the graph G is the sum of the absolute values of its D-eigenvalues. Two (connected) graphs are said to be D-equienergetic if they have equal D-energies. The D-spectra of some graphs and their D-energies are calculated. A pair of D-equienergetic bipartite graphs on 24,t24,t, tgeq3t geq 3, vertices is constructed

    Calibration and evaluation of Skylab altimetry for geodetic determination of the geoid

    Get PDF
    There are no author-identified significant results in this report
    corecore