MATHEMATICAL COMMUNICATIONS 13(2008), 123-131

On the distance spectra of some graphs

Gopalapillai Indulal* and Ivan $\operatorname{Gutman}^\dagger$

Abstract. The D-eigenvalues of a connected graph G are the eigenvalues of its distance matrix D, and form the D-spectrum of G. The D-energy $E_D(G)$ of the graph G is the sum of the absolute values of its D-eigenvalues. Two (connected) graphs are said to be D-equienergetic if they have equal D-energies. The D-spectra of some graphs and their D-energies are calculated. A pair of D-equienergetic bipartite graphs on $24t, t \geq 3$, vertices is constructed.

Key words: *distance eigenvalue (of a graph), distance spectrum (of a graph), distance energy (of a graph), distance-equienergetic graphs*

AMS subject classifications: 05C12, 05C50

Received November 26, 2007

Accepted May 5, 2008

1. Introduction

Let G be a connected graph with vertex set $V(G) = \{v_1, v_2, \ldots, v_p\}$. The distance matrix D = D(G) of G is defined so that its (i, j)-entry is equal to $d_G(v_i, v_j)$, the distance (= length of the shortest path [2]) between the vertices v_i and v_j of G. The eigenvalues of the D(G) are said to be the D-eigenvalues of G and form the D-spectrum of G, denoted by $spec_D(G)$.

The ordinary graph spectrum is formed by the eigenvalues of the adjacency matrix [4]. In what follows we denote the ordinary eigenvalues of the graph G by λ_i , $i = 1, 2, \ldots, p$, and the respective spectrum by spec(G).

Since the distance matrix is symmetric, all its eigenvalues μ_i , i = 1, 2, ..., p, are real and can be labelled so that $\mu_1 \ge \mu_2 \ge \cdots \ge \mu_p$. If $\mu_{i_1} > \mu_{i_2} > \cdots > \mu_{i_g}$ are the distinct *D*-eigenvalues, then the *D*-spectrum can be written as

$$spec_D(G) = \left(\begin{array}{cccc} \mu_{i_1} & \mu_{i_2} & \dots & \mu_{i_g} \\ m_1 & m_2 & \dots & m_g \end{array}\right)$$

where m_j indicates the algebraic multiplicity of the eigenvalue μ_{i_j} . Of course, $m_1 + m_2 + \cdots + m_g = p$.

^{*}Department of Mathematics, St. Aloysius College, Edathua, Alappuzha-689573, India, e-mail: indulalgopal@yahoo.com

[†]Faculty of Science, University of Kragujevac, P. O. Box 60, 34000 Kragujevac, Serbia, e-mail: gutman@kg.ac.yu

Two graphs G and H for which $spec_D(G) = spec_D(H)$ are said to be D-cospectral. Otherwise, they are non-D-cospectral.

The *D*-energy, $E_D(G)$, of *G* is defined as

$$E_D(G) = \sum_{i=1}^{p} |\mu_i| .$$
 (1)

Two graphs with equal D-energy are said to be D-equienergetic. D-cospectral graphs are evidently D-equienergetic. Therefore, in what follows we focus our attention to D-equienergetic non-D-cospectral graphs.

The concept of *D*-energy, Eq. (1), was recently introduced [11]. This definition was motivated by the much older [7] and nowadays extensively studied [8, 9, 10, 13, 14, 15, 16] graph energy, defined in a manner fully analogous to Eq. (1), but in terms of the ordinary graph eigenvalues (eigenvalues of the adjacency matrix, see [4]).

In this paper we first derive a Hoffman–type relation for the distance matrix of distance regular graphs. By means of it, the distance spectra of some graphs and their energies are obtained. Also pairs of *D*-equienergetic bipartite graphs on 24t, $t \geq 3$, vertices are constructed. All graphs considered in this paper are simple and we follow [4] for spectral graph theoretic terminology.

The considerations in the subsequent sections are based on the applications of the following lemmas:

Lemma 1 [see [4]]. Let G be a graph with adjacency matrix A and spec(G) = $\{\lambda_1, \lambda_2, \ldots, \lambda_p\}$. Then det $A = \prod_{i=1}^p \lambda_i$. In addition, for any polynomial P(x),

 $P(\lambda)$ is an eigenvalue of P(A) and hence det $P(A) = \prod_{i=1}^{p} P(\lambda_i)$.

Lemma 2 [see [5]]. Let

$$\mathbf{A} = \left[\begin{array}{cc} A_0 & A_1 \\ A_1 & A_0 \end{array} \right]$$

be a 2×2 block symmetric matrix. Then the eigenvalues of A are those of $A_0 + A_1$ together with those of $A_0 - A_1$.

Lemma 3 [see [4]]. Let M, N, P, and Q be matrices, and let M be invertible. Let

$$S = \left[\begin{array}{cc} M & N \\ P & Q \end{array} \right] \; .$$

Then det $S = \det M \det(Q - PM^{-1}N)$. Besides, if M and P commute, then det $S = \det(MQ - PN)$.

Lemma 4 [see [4]]. Let G be a connected r-regular graph, $r \ge 3$, with ordinary spectrum $spec(G)\{r, \lambda_2, \ldots, \lambda_p\}$. Then

$$spec(L(G)) = \begin{pmatrix} 2r-2 & \lambda_2 + r - 2 & \cdots & \lambda_p + r - 2 & -2 \\ 1 & 1 & \cdots & 1 & p(r-2)/2 \end{pmatrix}$$
.

Lemma 5 [see [4]]. For every $t \ge 3$, there exists a pair of non-cospectral cubic graphs on 2t vertices.

n	$greatest\ eigenvalue$	j even	$j \hspace{0.1in} odd$
even	$\frac{n^2}{4}$	0	$-cosec^2\left(\frac{\pi j}{n}\right)$
odd	$\frac{n^2-1}{4}$	$-\frac{1}{4}sec^2\left(\frac{\pi j}{2n}\right)$	$-\frac{1}{4}cosec^2\left(\frac{\pi j}{2n}\right)$

Lemma 6 [see [6]]. The distance spectrum of the cycle C_n is given by

Definition 1 [see [12]]. Let G be a graph with vertex set $V(G) = \{v_1, v_2, \ldots, v_p\}$. Take another copy of G with the vertices labelled by $\{u_1, u_2, \ldots, u_p\}$ where u_i corresponds to v_i for each i. Make u_i adjacent to all the vertices in $N(v_i)$ in G, for each i. The resulting graph, denoted by D_2G , is called the double graph of G.

Definition 2 [see [4]]. Let G be a graph. Attach a pendant vertex to each vertex of G. The resulting graph, denoted by $G \circ K_1$, is called the corona of G with K_1 .

We first prove the following auxiliary theorem.

Theorem 1. Let M be a real symmetric irreducible square matrix of order p in which each row sum is equal to a constant k. Then there exists a polynomial Q(x) such that Q(M) = J, where J is the all one square matrix whose order is same as that of M.

Proof. Since M is a real symmetric irreducible matrix in which each row sums to k, by the Frobenius theorem [4], k is a simple and greatest eigenvalue of M. The matrix M is diagonalizable because it is real and symmetric. Therefore there exists an orthonormal basis of characteristic vectors of M, associated with the eigenvalues of M.

Let $\lambda_1 = k, \lambda_2, \ldots, \lambda_g$ be the distinct eigenvalues of M. Let $\Im(\lambda_i)$ be the eigenspace spanned by the orthonormal set of characteristic vectors $\{x_1^i, x_2^i, \ldots, x_{p_i}^i\}$ associated with λ_i , $i = 1, 2, \ldots, g$. Then M has a spectral decomposition

$$M = \lambda_1 T_1 + \lambda_2 T_2 + \dots + \lambda_g T_g$$

where T_i is the projection of M onto $\Im(\lambda_i)$, treating M as a linear operator. Then $T_i^2 = T_i$, $T_i T_j = 0$, $i \neq j$ and

$$T_{i} = x_{1}^{i} \left(x_{1}^{i} \right)^{T} + x_{2}^{i} \left(x_{2}^{i} \right)^{T} + \dots + x_{p_{i}}^{i} \left(x_{p_{i}}^{i} \right)^{T} .$$

Now, corresponding to the greatest eigenvalue k of M, there exists a unique

(one-dimensional) orthonormal basis

$$x_1 = \begin{bmatrix} 1/\sqrt{p} \\ 1/\sqrt{p} \\ \vdots \\ 1/\sqrt{p} \end{bmatrix}$$

for $\Im(\lambda_1) = \Im(k)$, such that $M = k T_1 + \lambda_2 T_2 + \cdots + \lambda_g T_g$ where

$$T_{1} = \begin{bmatrix} 1/\sqrt{p} \\ 1/\sqrt{p} \\ \vdots \\ 1/\sqrt{p} \end{bmatrix} \begin{bmatrix} 1/\sqrt{p}, & 1/\sqrt{p}, & \cdots, & 1/\sqrt{p} \end{bmatrix}$$
$$= \begin{bmatrix} 1/p & 1/p & \cdots & 1/p \\ 1/p & 1/p & \cdots & 1/p \\ \cdots & \cdots & \cdots & \cdots \\ 1/p & 1/p & \cdots & 1/p \end{bmatrix} = \frac{1}{p} J .$$

Because the T_i 's are projections, we have $f(M) = f(k)T_1 + f(\lambda_2)T_2 + \cdots + f(\lambda_g)T_g$ for any polynomial f(x). As M is diagonalizable, the minimal polynomial of M is $(x-k)(x-\lambda_2)\cdots(x-\lambda_g)$.

Let $S(x) = (x - \lambda_2) \cdots (x - \lambda_g)$. Then $S(\lambda_i) = 0$, $\lambda_i \neq k$. Thus $S(M) = S(k) T_1 S(k) (1/p) J$. Choose Q(x) = p S(x)/S(k). This Q(x) satisfies the requirement of the theorem.

Theorem 2. Let D be the distance matrix of a connected distance regular graph G. Then D is irreducible and there exists a polynomial P(x) such that P(D) = J. In this case

$$P(x) = p \times \frac{(x - \lambda_2)(x - \lambda_3) \cdots (x - \lambda_g)}{(k - \lambda_2)(k - \lambda_3) \cdots (k - \lambda_g)}$$

where k is the unique sum of each row which is also the greatest simple eigenvalue of D, whereas $\lambda_2, \lambda_3, \ldots, \lambda_g$ are the other distinct eigenvalues of D.

Proof. The theorem follows from Theorem 1 due to the observation that the distance matrix of a connected distance regular graph is irreducible, symmetric and each row sums to a constant. \Box

The rest of this paper is organized as follows. In the next section we obtain the distance spectra of $D_2(G)$, $G \times K_2$, $G[K_2]$, the lexicographic product of G with K_2 , and $G \circ K_1$. Using this, the distance energies of $D_2(C_{2n})$, $C_n \times K_2$, $C_{2n}[K_2]$, and $C_n \circ K_1$ are calculated. In the third section the *D*-spectrum of the extended double cover graphs of regular graphs of diameter 2 is discussed and a pair of *D*-equienergetic bipartite graphs on 24t, $t \geq 3$ vertices is constructed.

For operations on graphs that are not defined in this paper see [4].

2. Distance spectra of some graphs

In this section we obtain the distance spectra of the double graph of C_n , the Cartesian product of C_n with K_2 and the corona of C_n with K_1 .

2.1. The double graph of G

Theorem 3. Let G be a graph with distance spectrum $spec_D(G) = \{\mu_1, \mu_2, \dots, \mu_p\}$. Then

$$spec_D(D_2G) = \begin{pmatrix} 2(\mu_i + 1) & -2\\ 1 & p \end{pmatrix}, \ i = 1, 2, \dots, p$$
.

Proof. By definition of $D_2(G)$ we have:

$$d_{D_2G}(v_i, v_j) = d_G(v_i, v_j)$$

$$d_{D_2G}(v_i, u_i) = 2$$

$$d_{D_2G}(v_i, u_j) = d_G(v_i, v_j)$$

$$d_{D_2G}(v_j, u_i) = d_G(v_j, v_i) .$$

Hence a suitable ordering of vertices yields the distance matrix of D_2G of the form

$$\left[\begin{array}{cc} D & D+2I \\ D+2I & D \end{array} \right]$$

and the theorem follows from Lemma 2.

Theorem 4. $E_D(D_2C_{2n}) = 4n(n+1)$. **Proof.** By Lemma 6 and Theorem 3 we have

$$spec_D(D_2C_{2n}) = \begin{pmatrix} 2(n^2+1) & 2 & -2\cot^2(\pi j/2n) & -2 \\ 1 & n-1 & 1 & 2n \end{pmatrix}, \ j = 1, 3, 5, \dots, 2n-1.$$

Thus $E_D(D_2C_{2n}) = 2 \times [2(n^2+1) + 2(n-1)]4n(n+1).$

2.2. The Cartesian product $G \times K_2$

Theorem 5. Let G be a distance regular graph with distance regularity k, distance matrix D, and D-spectrum $\{\mu_1 = k, \mu_2, \dots, \mu_p\}$. Then

$$spec_D(G \times K_2) = \begin{pmatrix} 2k+p & -p & 2\mu_i & 0\\ 1 & 1 & 1 & p-1 \end{pmatrix}$$
, $i = 2, 3, \dots, p$.

Proof. The theorem follows from the fact that the distance matrix of $G \times K_2$ has the form

$$\left[\begin{array}{cc} D & D+J \\ D+J & D \end{array}\right]$$

and from Theorem 1 and Lemma 2.

Corollary 1. $E_D(G \times K_2) = 2(E_D(G) + p)$.

127

2.3. The corona of G and K_1

Theorem 6. Let G be a connected distance regular graph with distance regularity k, distance matrix D, and $spec_D(G) = \{\mu_1 = k, \mu_2, \dots, \mu_p\}$. Then $spec_D(G \circ K_1)$ consists of the numbers

$$p+k-1+\sqrt{(p+k)^2+(p-1)^2} , \qquad p+k-1-\sqrt{(p+k)^2+(p-1)^2}$$

$$\mu_i-1+\sqrt{\mu_i^2+1} , \quad \mu_i-1-\sqrt{\mu_i^2+1} , \qquad i=2,3,\ldots,p .$$

Proof. From the definition of $G \circ K_1$, it follows that the distance matrix H of $G \circ K_1$ is of the form

$$\left[\begin{array}{cc} D & D+J \\ D+J & D+2(J-I) \end{array}\right] \ .$$

Now the characteristic equation of H is

$$\begin{aligned} |\lambda I - H| &= 0 \Rightarrow \begin{vmatrix} \lambda I - D & -(D + J) \\ -(D + J) & \lambda I - D - 2(J - I) \end{vmatrix} &= 0 \\ \Rightarrow \left| (\lambda I - D) (\lambda I - D - 2(J - I)) - (D + J)^2 \right| &= 0 \text{ by Lemma 3} \end{aligned}$$

Now D being the distance matrix of a distance regular graph, it satisfies the requirement in Theorem 2. Then the D- spectrum of $G \circ K_1$ follows from Theorem 2 and Lemma 1.

Corollary 2.

$$E_D(C_{2n} \circ K_1) = 2\left[(n-1)^2 + \sqrt{(n-1)^4 + 6n^2}\right]$$
$$E_D(C_{2n+1} \circ K_1) = 2\left[n^2 + 3n + \sqrt{(n^2 + 3n)^2 + 6n^2 + 6n + 1}\right]$$

2.4. The lexicographic product of G with K_2

Theorem 7. Let G be a connected graph with distance spectrum $spec_D(G)\{\mu_1 = k, \mu_2, \ldots, \mu_p\}$. Then

$$spec_D(G[K_2]) = \begin{pmatrix} 2\mu_i + 1 & -1 \\ 1 & p \end{pmatrix}$$
, $i = 1, 2, ..., p$.

Proof. From the definition of the lexicographic product of G with K_2 , its distance matrix can be written as

$$\left[\begin{array}{cc} D & D+I \\ D+I & D \end{array}\right]$$

and the theorem follows from Lemma 2.

Corollary 3. $E_D(C_{2n}[K_2]) = 2n(2n+1)$. **Proof.** From Lemma 6 and Theorem 7 we have

$$spec_D(C_{2n}[K_2]) = \begin{pmatrix} 2n^2 + 1 & 1 & -1 & 1 - 2cosec^2(\pi j/2n) \\ 1 & n-1 & 2n & 1 \end{pmatrix}, \ j = 1, 3, 5, \dots$$

Since $1 - 2 \csc^2 \theta = -(\cot^2 \theta + \csc^2 \theta)$, the only positive eigenvalues are $2n^2 + 1$ and 1 with multiplicities 1 and n-1, respectively. Thus $E_D(C_{2n}[K_2]) = 2n(2n+1)$.

3. The extended double cover graph of regular graphs of diameter 2

In [1] N. Alon introduced the concept of extended double cover graph of a graph as follows.

Let G be a graph on the vertex set $\{v_1, v_2, \ldots, v_p\}$. Define a bipartite graph H with $V(H) = \{v_1, v_2, \ldots, v_p, u_1, u_2, \ldots, u_p\}$ in which v_i is adjacent to u_i for each $i = 1, 2, \ldots, p$ and v_i is adjacent to u_j if v_i is adjacent to v_j in G. The graph H is known as the extended double cover graph (*EDC*-graph) of G. The ordinary spectrum of H has been determined in [3].

In this section we obtain the distance spectrum of the EDC-graph of a regular graph of diameter 2 and use it to construct regular *D*-equienergetic bipartite graphs on 24 t vertices, for $t \geq 3$.

Theorem 8. Let G be an r-regular graph of diameter 2 on p vertices with (ordinary) spectrum $\{r, \lambda_2, \ldots, \lambda_p\}$. Then the D-spectrum of the EDC-graph of G consists of the numbers 5p - 2r - 4, 2r - p, $-2(\lambda_i + 2)$, $i = 2, 3, \ldots, p$, and $2\lambda_i$, $i = 2, 3, \ldots, p$.

Proof. Let A and \overline{A} be, respectively, the adjacency matrices of G and \overline{G} . Then by the definition of the EDC-graph, its distance matrix can be written as

$$\left[\begin{array}{cc} 2\left(J-I\right) & A+3\overline{A}+I\\ A+3\overline{A}+I & 2\left(J-I\right) \end{array}\right]$$

and the theorem follows from Lemmas 1 and 3 and also from the observation that $\overline{A} = J - I - A$.

Corollary 4.

$$E_D \left(EDC \left(C_p \nabla C_p \right) \right) = \begin{cases} 40 \ , p = 3 \\ 4 \left[E \left(C_p \right) + 5p - 10 \right] \ , p \ge 4 \end{cases}$$

where $C_p \nabla C_p$ is the join [4] of C_p with itself.

Proof. The join of C_p with itself is a regular graph diameter 2 with the ordinary spectrum

$$\begin{pmatrix} p+2 & 2-p & \lambda_i \\ 1 & 1 & 2 \end{pmatrix}$$
, $i = 2, 3, \dots, p$

where $\{2, \lambda_2, \ldots, \lambda_p\}$ is the ordinary spectrum of C_p . Then by the above theorem, the distance spectrum of $EDC(C_p \nabla C_p)$ is

$$\begin{pmatrix} 8p-8 & 4 & -2(\lambda_i+2) & 2p-8 & 4-2p & 2\lambda_i \\ 1 & 1 & 2 & 1 & 1 & 2 \end{pmatrix}, i = 2, 3, \dots, p$$

and hence the corollary follows as $E(C_3) = 4$.

3.1. On a pair of *D*-equienergetic bipartite graphs

Theorem 9. There exists a pair of regular non-D-cospectral D-equienergetic bipartite graphs on 24t vertices, for each $t \geq 3$.

Proof. Let G be a cubic graph on 2t vertices, $t \ge 3$. Consider $L^2(G)$, its second iterated line graph. Then by Lemma 4 and Theorem 8, we calculate that for $F = L^2(G)\nabla L^2(G)$, the D-spectrum of EDC(F) is

 $i = 2, 3, \ldots, 2t$. Thus

$$E_D(EDC(F)) = 2 \times \left[12(t-1) + 32t + 4\sum_{i=2}^{2t} (\lambda_i + 5) \right]$$

= 2 × [12t - 12 + 32t + 4(-3 + 5(2t - 1))]
= 8(21t - 11).

Now let G_1 and G_2 be the two non-cospectral cubic graphs on 2t vertices as given by Lemma 5. Further, let H_1 and H_2 be the *EDC*-graphs of $L^2(G_1)\nabla L^2(G_1)$ and $L^2(G_2)\nabla L^2(G_2)$, respectively. Then H_1 and H_2 are bipartite and $E_D(H_1) = E_D(H_2) = 8(21t - 11)$, proving the theorem.

Acknowledgements

The authors would like to thank the referees for helpful comments. G.Indulal thanks the University Grants Commission of Government of India for supporting this work by providing a grant under the minor research project.

References

- [1] N. ALON, *Eigenvalues and expanders*, Combinatorica 6(1986), 83–96.
- [2] F. BUCKLEY, F. HARARY, Distance in Graphs, Addison-Wesley, Redwood, 1990.
- [3] Z. CHEN, Spectra of extended double cover graphs, Czechoslovak Math. J. 54(2004), 1077–1082.

- [4] D. M. CVETKOVIĆ, M. DOOB, H. SACHS, Spectra of Graphs Theory and Applications, Academic Press, New York, 1980.
- [5] P. J. DAVIS, Circulant Matrices, Wiley, New York, 1979.
- [6] P. W. FOWLER, G. CAPOROSSI, P. HANSEN, Distance matrices, Wiener indices, and related invariants of fullerenes, J. Phys. Chem. A 105(2001), 6232-6242.
- [7] I. GUTMAN, The energy of a graph: Old and new results, in: A. BETTEN, A. KOHNERT, R. LAUE, A. WASSERMANN(Eds.), Algebraic Combinatorics and Applications, Springer-Verlag, Berlin, 2001, pp. 196–211.
- [8] I. GUTMAN, On graphs whose energy exceeds the number of vertices, Lin. Algebra Appl., in press.
- [9] I. GUTMAN, S. ZARE FIROOZABADI, J. A. DE LA PEÑA, J. RADA, On the energy of regular graphs, MATCH Commun. Math. Comput. Chem. 57(2007), 435–442.
- [10] W. H. HAEMERS, Strongly regular graphs with maximal energy, Lin. Algebra Appl., in press.
- [11] G. INDULAL, I. GUTMAN, A. VIJAYAKUMAR, On distance energy of graphs, MATCH Commun. Math. Comput. Chem. 60(2008), in press.
- [12] G. INDULAL, A. VIJAYAKUMAR, On a pair of equienergetic graphs, MATCH Commun. Math. Comput. Chem. 55(2006), 83–90.
- [13] G. INDULAL, A. VIJAYAKUMAR, A note on energy of some graphs, MATCH Commun. Math. Comput. Chem. 59(2008), 269–274.
- [14] X. LI, J. ZHANG, On bicyclic graphs with maximal energy, Lin. Algebra Appl. 427(2007), 87–98.
- [15] V. NIKIFOROV, The energy of graphs and matrices, J. Math. Anal. Appl. 326(2007), 1472–1475.
- [16] I. SHPARLINSKI, On the energy of some circulant graphs, Lin. Algebra Appl. 414(2006), 378–382.