157 research outputs found

    Beyond DNA repair: DNA-PK function in cancer.

    Get PDF
    UNLABELLED: The DNA-dependent protein kinase (DNA-PK) is a pivotal component of the DNA repair machinery that governs the response to DNA damage, serving to maintain genome integrity. However, the DNA-PK kinase component was initially isolated with transcriptional complexes, and recent findings have illuminated the impact of DNA-PK-mediated transcriptional regulation on tumor progression and therapeutic response. DNA-PK expression has also been correlated with poor outcome in selected tumor types, further underscoring the importance of understanding its role in disease. Herein, the molecular and cellular consequences of DNA-PK are considered, with an eye toward discerning the rationale for therapeutic targeting of DNA-PK. SIGNIFICANCE: Although DNA-PK is classically considered a component of damage response, recent findings illuminate damage-independent functions of DNA-PK that affect multiple tumor-associated pathways and provide a rationale for the development of novel therapeutic strategies

    Multi-train trajectory optimisation to maximise rail network energy efficiency under travel-time constraints

    Get PDF
    Optimising the trajectories of multiple interacting trains to maximise energy efficiency is a difficult, but highly desirable, problem to solve. A bespoke genetic algorithm has been developed for the multi-train trajectory optimisation problem and used to seek a near-optimal set of control point distances for multiple trains, such that a weighted sum of the time and energy objectives is minimised. Genetic operators tailored to the problem are developed including a new mutation operation and the insertion and deletion pairs of control points during the reproduction process. Compared with published results, the new GA was shown to increase the quality of solutions found by an average of 27.6% and increase consistency by a factor of 28. This allows more precise control over the relative priority given to achieving time targets or increasing energy efficiency

    Concurrent Inhibition of IGF1R and ERK Increases Pancreatic Cancer Sensitivity to Autophagy Inhibitors

    Get PDF
    The aggressive nature of pancreatic ductal adenocarcinoma (PDAC) mandates the development of improved therapies. As KRAS mutations are found in 95% of PDAC and are critical for tumor maintenance, one promising strategy involves exploiting KRAS-dependent metabolic perturbations. The macrometabolic process of autophagy is upregulated in KRAS-mutant PDAC, and PDAC growth is reliant on autophagy. However, inhibition of autophagy as monotherapy using the lysosomal inhibitor hydroxychloroquine (HCQ) has shown limited clinical efficacy. To identify strategies that can improve PDAC sensitivity to HCQ, we applied a CRISPR-Cas9 loss-of-function screen and found that a top sensitizer was the receptor tyrosine kinase (RTK) insulin-like growth factor 1 receptor (IGF1R). Additionally, reverse phase protein array pathway activation mapping profiled the signaling pathways altered by chloroquine (CQ) treatment. Activating phosphorylation of RTKs, including IGF1R, was a common compensatory increase in response to CQ. Inhibition of IGF1R increased autophagic flux and sensitivity to CQ-mediated growth suppression both in vitro and in vivo. Cotargeting both IGF1R and pathways that antagonize autophagy, such as ERK-MAPK axis, was strongly synergistic. IGF1R and ERK inhibition converged on suppression of glycolysis, leading to enhanced dependence on autophagy. Accordingly, concurrent inhibition of IGF1R, ERK, and autophagy induced cytotoxicity in PDAC cell lines and decreased viability in human PDAC organoids. In conclusion, targeting IGF1R together with ERK enhances the effectiveness of autophagy inhibitors in PDAC. Significance: Compensatory upregulation of IGF1R and ERK- MAPK signaling limits the efficacy of autophagy inhibitors chloroquine and hydroxychloroquine, and their concurrent inhibition synergistically increases autophagy dependence and chloroquine sensitivity in pancreatic ductal adenocarcinoma.Peer reviewe

    DNA-PKcs-Mediated Transcriptional Regulation Drives Prostate Cancer Progression and Metastasis.

    Get PDF
    Emerging evidence demonstrates that the DNA repair kinase DNA-PKcs exerts divergent roles in transcriptional regulation of unsolved consequence. Here, in vitro and in vivo interrogation demonstrate that DNA-PKcs functions as a selective modulator of transcriptional networks that induce cell migration, invasion, and metastasis. Accordingly, suppression of DNA-PKcs inhibits tumor metastases. Clinical assessment revealed that DNA-PKcs is significantly elevated in advanced disease and independently predicts for metastases, recurrence, and reduced overall survival. Further investigation demonstrated that DNA-PKcs in advanced tumors is highly activated, independent of DNA damage indicators. Combined, these findings reveal unexpected DNA-PKcs functions, identify DNA-PKcs as a potent driver of tumor progression and metastases, and nominate DNA-PKcs as a therapeutic target for advanced malignancies

    Knowledge of ghostwriting and financial conflicts-of-interest reduces the perceived credibility of biomedical research

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>While the impact of conflicts-of-interest (COI) is of increasing concern in academic medicine, there is little research on the reaction of practicing clinicians to the disclosure of such conflicts. We developed two research vignettes presenting a fictional antidepressant medication study, one in which the principal investigator had no COI and another in which there were multiple COI disclosed. We confirmed the face validity of the COI vignette through consultation with experts. Hospital-based clinicians were randomly assigned to read one of these two vignettes and then administered a credibility scale.</p> <p>Findings</p> <p>Perceived credibility ratings were much lower in the COI group, with a difference of 11.00 points (31.42%) on the credibility scale total as calculated through the Mann-Whitney U test (95% CI = 6.99 - 15.00, <it>p </it>< .001). Clinicians in the COI group were also less likely to recommend the antidepressant medication discussed in the vignette (Odds Ratio = 0.163, 95% CI = .03 = 0.875).</p> <p>Conclusions</p> <p>In this study, increased disclosure of COI resulted in lower credibility ratings.</p

    Mouse model of carbon tetrachloride induced liver fibrosis: Histopathological changes and expression of CD133 and epidermal growth factor

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the setting of chronic liver injury in humans, epidermal growth factor (EGF) and EGF receptor (EGFR) are up-regulated and have been proposed to have vital roles in both liver regeneration and development of hepatocellular carcinoma (HCC). Chronic liver injury also leads to hepatic stellate cell (HSC) differentiation and a novel subpopulation of HSCs which express CD133 and exhibit properties of progenitor cells has been described in rats. The carbon tetrachloride (CCl<sub>4</sub>)-induced mouse model has been historically relied upon to study liver injury and regeneration. We exposed mice to CCl<sub>4 </sub>to assess whether EGF and CD133+ HSCs are up-regulated in chronically injured liver.</p> <p>Methods</p> <p>CCl<sub>4 </sub>in olive oil was administered to strain A/J mice three times per week by oral gavage.</p> <p>Results</p> <p>Multiple well-differentiated HCCs were found in all livers after 15 weeks of CCl<sub>4 </sub>treatment. Notably, HCCs developed within the setting of fibrosis and not cirrhosis. CD133 was dramatically up-regulated after CCl<sub>4 </sub>treatment, and increased expression of desmin and glial fibrillary acidic protein, representative markers of HSCs, was also observed. EGF expression significantly decreased, contrary to observations in humans, whereas the expression of amphiregulin, another EGFR ligand, was significantly increased.</p> <p>Conclusions</p> <p>Species-specific differences exist with respect to the histopathological and molecular pathogenesis of chronic liver disease. CCl<sub>4</sub>-induced chronic liver injury in A/J mice has important differences compared to human cirrhosis leading to HCC.</p

    11β-hydroxysteroid dehydrogenase type 2 deficiency accelerates atherogenesis and causes proinflammatory changes in the endothelium in apoe<sup>-/-</sup> mice

    Get PDF
    Mineralocorticoid receptor (MR) activation is pro inflammatory and pro atherogenic. Antagonism of MR improves survival in humans with congestive heart failure caused by atherosclerotic disease. In animal models, activation of MR exacerbates atherosclerosis. The enzyme 11β-hydroxysteroid dehydrogenase 2 (11β-HSD2) prevents inappropriate activation of the mineralocorticoid receptor (MR) from inappropriate activation by glucocorticoids by inactivating glucocorticoids in mineralocorticoid-target tissues. To determine whether glucocorticoid-mediated activation of MR increases atheromatous plaque formation we generated Apoe(−/−)/11β-HSD2(−/−) double-knockout (E/b2) mice. On chow diet, E/b2 mice developed atherosclerotic lesions by 3 months of age, while Apoe(−/−) mice remained lesion-free. Brachiocephalic plaques in 3 month-old E/b2 mice showed increased macrophage and lipid content and reduced collagen content compared to similar sized brachiocephalic plaques in 6 month old Apoe(−/−) mice. Crucially, treatment of E/b2 mice with eplerenone, an MR antagonist, reduced plaque development and macrophage infiltration while increasing collagen and smooth muscle cell content without any effect on systolic blood pressure (SBP). In contrast, reduction of SBP in E/b2 mice using the epithelial sodium channel (ENaC) blocker amiloride produced a less profound atheroprotective effect. Vascular cell adhesion molecule 1 (VCAM-1) expression was increased in the endothelium of E/b2 mice compared to Apoe(−/−) mice. Similarly, aldosterone increased VCAM-1 expression in mouse aortic endothelial cells, an effect mimicked by corticosterone only in the presence of an 11β-HSD2 inhibitor. Thus, loss of 11β-HSD2 leads to striking atherogenesis associated with activation of MR stimulating pro-inflammatory processes in the endothelium of E/b2 mice

    Appraisal of literature reviews on end-of-life care for minority ethnic groups in the UK and a critical comparison with policy recommendations from the UK end-of-life care strategy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Evidence of low end-of-life (EoL) care service use by minority ethnic groups in the UK has given rise to a body of research and a number of reviews of the literature. This article aims to review and evaluate literature reviews on minority ethnic groups and EoL care in the UK and assess their suitability as an evidence base for policy.</p> <p>Methods</p> <p>Systematic review. Searches were carried out in thirteen electronic databases, eight journals, reference lists, and grey literature. Reviews were included if they concerned minority ethnic groups and EoL care in the UK. Reviews were graded for quality and key themes identified.</p> <p>Results</p> <p>Thirteen reviews (2001-2009) met inclusion criteria. Seven took a systematic approach, of which four scored highly for methodological quality (a mean score of six, median seven). The majority of systematic reviews were therefore of a reasonable methodological quality. Most reviews were restricted by ethnic group, aspect of EoL care, or were broader reviews which reported relevant findings. Six key themes were identified.</p> <p>Conclusions</p> <p>A number of reviews were systematic and scored highly for methodological quality. These reviews provide a good reflection of the primary evidence and could be used to inform policy. The complexity and inter-relatedness of factors leading to low service use was recognised and reflected in reviews' recommendations for service improvement. Recommendations made in the UK End-of-Life Care Strategy were limited in comparison, and the Strategy's evidence base concerning minority ethnic groups was found to be narrow. Future policy should be embedded strongly in the evidence base to reflect the current literature and minimise bias.</p

    Development of a Quantitative Bead Capture Assay for Soluble IL-7 Receptor Alpha in Human Plasma

    Get PDF
    IL-7 is an essential cytokine in T-cell development and homeostasis. It binds to the IL-7R receptor, a complex of the IL-7Rα (CD127) and common γ (CD132) chains. There is significant interest in evaluating the expression of CD127 on human T-cells as it often decreased in medical conditions leading to lymphopenia. Previous reports showed the usefulness of CD127 as a prognostic marker in viral infections such as HIV, CMV, EBV and HCV. A soluble CD127 (sCD127) is released in plasma and may contribute to disease pathogenesis through its control on IL-7 activities. Measuring sCD127 is important to define its role and may complement existing markers used in lymphopenic disease management. We describe a new quantitative assay for the measurement of sCD127 in plasma and report sCD127 concentrations in healthy adults.We developed a quantitative bead-based sCD127 capture assay. Polyclonal CD127-specific antibodies were chosen for capture and a biotinylated monoclonal anti-CD127 antibody was selected for detection. The assay can detect native sCD127 and recombinant sCD127 which served as the calibrator. The analytical performance of the assay was characterized and the concentration and stability of plasma sCD127 in healthy adults was determined. The assay's range was 3.2–1000 ng/mL. The concentration of plasma sCD127 was 164±104 ng/mL with over a log variation between subjects. Individual sCD127 concentrations remained stable when measured serially during a period of up to one year.This is the first report on the quantification of plasma sCD127 in a population of healthy adults. Soluble CD127 plasma concentrations remained stable over time in a given individual and sCD127 immunoreactivity was resistant to repeated freeze-thaw cycles. This quantitative sCD127 assay is a valuable tool for defining the potential role of sCD127 in lymphopenic diseases
    corecore