201 research outputs found

    Unmanned extravehicular environments operation qualification test of the Gemini ELSS /Extravehicular Life Support System/ Test plan

    Get PDF
    Space environment and failure mode simulation for unmanned qualification testing of Gemini Extravehicular Life Support System /ELSS

    Thermal performance test of the A-2H Apollo Extravehicular Mobility Unit, volume I

    Get PDF
    Thermal and pressure evaluation testing for Apollo Extravehicular Mobility Unit /EMU

    Impact of Simian Immunodeficiency Virus Infection on Chimpanzee Population Dynamics

    Get PDF
    Like human immunodeficiency virus type 1 (HIV-1), simian immunodeficiency virus of chimpanzees (SIVcpz) can cause CD4+ T cell loss and premature death. Here, we used molecular surveillance tools and mathematical modeling to estimate the impact of SIVcpz infection on chimpanzee population dynamics. Habituated (Mitumba and Kasekela) and non-habituated (Kalande) chimpanzees were studied in Gombe National Park, Tanzania. Ape population sizes were determined from demographic records (Mitumba and Kasekela) or individual sightings and genotyping (Kalande), while SIVcpz prevalence rates were monitored using non-invasive methods. Between 2002–2009, the Mitumba and Kasekela communities experienced mean annual growth rates of 1.9% and 2.4%, respectively, while Kalande chimpanzees suffered a significant decline, with a mean growth rate of −6.5% to −7.4%, depending on population estimates. A rapid decline in Kalande was first noted in the 1990s and originally attributed to poaching and reduced food sources. However, between 2002–2009, we found a mean SIVcpz prevalence in Kalande of 46.1%, which was almost four times higher than the prevalence in Mitumba (12.7%) and Kasekela (12.1%). To explore whether SIVcpz contributed to the Kalande decline, we used empirically determined SIVcpz transmission probabilities as well as chimpanzee mortality, mating and migration data to model the effect of viral pathogenicity on chimpanzee population growth. Deterministic calculations indicated that a prevalence of greater than 3.4% would result in negative growth and eventual population extinction, even using conservative mortality estimates. However, stochastic models revealed that in representative populations, SIVcpz, and not its host species, frequently went extinct. High SIVcpz transmission probability and excess mortality reduced population persistence, while intercommunity migration often rescued infected communities, even when immigrating females had a chance of being SIVcpz infected. Together, these results suggest that the decline of the Kalande community was caused, at least in part, by high levels of SIVcpz infection. However, population extinction is not an inevitable consequence of SIVcpz infection, but depends on additional variables, such as migration, that promote survival. These findings are consistent with the uneven distribution of SIVcpz throughout central Africa and explain how chimpanzees in Gombe and elsewhere can be at equipoise with this pathogen

    Deviant Peer Affiliation and Antisocial Behavior: Interaction with Monoamine Oxidase A (MAOA) Genotype

    Get PDF
    Although genetic and environmental factors are separately implicated in the development of antisocial behavior (ASB), interactive models have emerged relatively recently, particularly those incorporating molecular genetic data. Using a large sample of male Caucasian adolescents and young adults from the National Longitudinal Study of Adolescent Health (Add Health), the association of deviant peer affiliation, the 30-base pair variable number tandem repeat polymorphism in promoter region of the monoamine oxidase-A (MAOA) gene, and their interaction, with antisocial behavior (ASB) was investigated. Weighted analyses accounting for over-sampling and clustering within schools as well as controlling for age and wave suggested that deviant peer affiliation and MAOA genotype were each significantly associated with levels of overt ASB across a 6-year period. Only deviant peer affiliation was significantly related to covert ASB, however. Additionally, there was evidence suggestive of a gene-environment interaction (G × E) where the influence of deviant peer affiliation on overt ASB was significantly stronger among individuals with the high-activity MAOA genotype than the low-activity genotype. MAOA was not significantly associated with deviant peer affiliation, thus strengthening the inference of G × E rather than gene-environment correlation (rGE). Different forms of gene-environment interplay and implications for future research on ASB are discussed

    Azithromycin-chloroquine and the intermittent preventive treatment of malaria in pregnancy

    Get PDF
    In the high malaria-transmission settings of sub-Saharan Africa, malaria in pregnancy is an important cause of maternal, perinatal and neonatal morbidity. Intermittent preventive treatment of malaria in pregnancy (IPTp) with sulphadoxine-pyrimethamine (SP) reduces the incidence of low birth-weight, pre-term delivery, intrauterine growth-retardation and maternal anaemia. However, the public health benefits of IPTp are declining due to SP resistance. The combination of azithromycin and chloroquine is a potential alternative to SP for IPTp. This review summarizes key in vitro and in vivo evidence of azithromycin and chloroquine activity against Plasmodium falciparum and Plasmodium vivax, as well as the anticipated secondary benefits that may result from their combined use in IPTp, including the cure and prevention of many sexually transmitted diseases. Drug costs and the necessity for external financing are discussed along with a range of issues related to drug resistance and surveillance. Several scientific and programmatic questions of interest to policymakers and programme managers are also presented that would need to be addressed before azithromycin-chloroquine could be adopted for use in IPTp

    Changes in Gene Expression and Cellular Architecture in an Ovarian Cancer Progression Model

    Get PDF
    BACKGROUND: Ovarian cancer is the fifth leading cause of cancer deaths among women. Early stage disease often remains undetected due the lack of symptoms and reliable biomarkers. The identification of early genetic changes could provide insights into novel signaling pathways that may be exploited for early detection and treatment. METHODOLOGY/PRINCIPAL FINDINGS: Mouse ovarian surface epithelial (MOSE) cells were used to identify stage-dependent changes in gene expression levels and signal transduction pathways by mouse whole genome microarray analyses and gene ontology. These cells have undergone spontaneous transformation in cell culture and transitioned from non-tumorigenic to intermediate and aggressive, malignant phenotypes. Significantly changed genes were overrepresented in a number of pathways, most notably the cytoskeleton functional category. Concurrent with gene expression changes, the cytoskeletal architecture became progressively disorganized, resulting in aberrant expression or subcellular distribution of key cytoskeletal regulatory proteins (focal adhesion kinase, α-actinin, and vinculin). The cytoskeletal disorganization was accompanied by altered patterns of serine and tyrosine phosphorylation as well as changed expression and subcellular localization of integral signaling intermediates APC and PKCβII. CONCLUSIONS/SIGNIFICANCE: Our studies have identified genes that are aberrantly expressed during MOSE cell neoplastic progression. We show that early stage dysregulation of actin microfilaments is followed by progressive disorganization of microtubules and intermediate filaments at later stages. These stage-specific, step-wise changes provide further insights into the time and spatial sequence of events that lead to the fully transformed state since these changes are also observed in aggressive human ovarian cancer cell lines independent of their histological type. Moreover, our studies support a link between aberrant cytoskeleton organization and regulation of important downstream signaling events that may be involved in cancer progression. Thus, our MOSE-derived cell model represents a unique model for in depth mechanistic studies of ovarian cancer progression

    Genetic Structure, Nestmate Recognition and Behaviour of Two Cryptic Species of the Invasive Big-Headed Ant Pheidole megacephala

    Get PDF
    info:eu-repo/semantics/publishe

    Size Doesn't Matter: Towards a More Inclusive Philosophy of Biology

    Get PDF
    notes: As the primary author, O’Malley drafted the paper, and gathered and analysed data (scientific papers and talks). Conceptual analysis was conducted by both authors.publication-status: Publishedtypes: ArticlePhilosophers of biology, along with everyone else, generally perceive life to fall into two broad categories, the microbes and macrobes, and then pay most of their attention to the latter. ‘Macrobe’ is the word we propose for larger life forms, and we use it as part of an argument for microbial equality. We suggest that taking more notice of microbes – the dominant life form on the planet, both now and throughout evolutionary history – will transform some of the philosophy of biology’s standard ideas on ontology, evolution, taxonomy and biodiversity. We set out a number of recent developments in microbiology – including biofilm formation, chemotaxis, quorum sensing and gene transfer – that highlight microbial capacities for cooperation and communication and break down conventional thinking that microbes are solely or primarily single-celled organisms. These insights also bring new perspectives to the levels of selection debate, as well as to discussions of the evolution and nature of multicellularity, and to neo-Darwinian understandings of evolutionary mechanisms. We show how these revisions lead to further complications for microbial classification and the philosophies of systematics and biodiversity. Incorporating microbial insights into the philosophy of biology will challenge many of its assumptions, but also give greater scope and depth to its investigations
    corecore