398 research outputs found

    A case study in AI-assisted board game design

    Get PDF
    We use AI agents to play successive design iterations of an analogue board game to understand the sorts of question a designer asks of a game, and how AI play-testing approaches can help answer these questions and reduce the need for time-consuming human play-testing. Our case study supports the view that AI play-testing can complement human testing, but can certainly not replace it. A core issue to be addressed is the extent to which the designer trusts the results of AI play-testing as sufficiently human-like. The majority of design changes are inspired from human play-testing, but AI play-testing helpfully complements these and often gave the designer the confidence to make changes faster where AI and humans 'agreed'

    Willingness-to-Pay for New Products in a University Foodservice Setting

    Get PDF
    A dairy products manufacturer wishing to expand into university foodservice operations collaborated with a graduate marketing class to research student preferences regarding the Company’s products. Baseline and follow-up stated choice surveys and conditional logit analyses were conducted at a land-grant university where the Company’s products were introduced. Brand awareness grew but remained low during the study period. Average WTP estimates for the Company’s most popular product approximated the retail price and resembled WTP for a competing brand. Average WTP for the Company’s other products, however, was considerably lower than the retail price. Significant WTP differences existed among some consumer segments.Willingness-to-Pay, Consumer Segment, University Foodservice, Conjoint analysis, Consumer/Household Economics, Demand and Price Analysis, Food Consumption/Nutrition/Food Safety, Research Methods/ Statistical Methods,

    General relativistic simulations of pasive-magneto-rotational core collapse with microphysics

    Get PDF
    This paper presents results from axisymmetric simulations of magneto-rotational stellar core collapse to neutron stars in general relativity using the passive field approximation for the magnetic field. These simulations are performed using a new general relativistic numerical code specifically designed to study this astrophysical scenario. The code is based on the conformally-flat approximation of Einstein's field equations and conservative formulations of the magneto-hydrodynamics equations. The code has been recently upgraded to incorporate a tabulated, microphysical equation of state and an approximate deleptonization scheme. This allows us to perform the most realistic simulations of magneto-rotational core collapse to date, which are compared with simulations employing a simplified (hybrid) equation of state, widely used in the relativistic core collapse community. Furthermore, state-of-the-art (unmagnetized) initial models from stellar evolution are used. In general, stellar evolution models predict weak magnetic fields in the progenitors, which justifies our simplification of performing the computations under the approach that we call the passive field approximation for the magnetic field. Our results show that for the core collapse models with microphysics the saturation of the magnetic field cannot be reached within dynamical time scales by winding up the poloidal magnetic field into a toroidal one. We estimate the effect of other amplification mechanisms including the magneto-rotational instability (MRI) and several types of dynamos.Comment: 25 pages, 15 figures, accepted for publication in Astronomy & Astrophysics July 31, 2007. Added 1 figure and a new subsectio

    An improved measurement of muon antineutrino disappearance in MINOS

    Get PDF
    We report an improved measurement of muon anti-neutrino disappearance over a distance of 735km using the MINOS detectors and the Fermilab Main Injector neutrino beam in a muon anti-neutrino enhanced configuration. From a total exposure of 2.95e20 protons on target, of which 42% have not been previously analyzed, we make the most precise measurement of the anti-neutrino "atmospheric" delta-m squared = 2.62 +0.31/-0.28 (stat.) +/- 0.09 (syst.) and constrain the anti-neutrino atmospheric mixing angle >0.75 (90%CL). These values are in agreement with those measured for muon neutrinos, removing the tension reported previously.Comment: 5 pages, 4 figures. In submission to Phys.Rev.Let

    Diving into the vertical dimension of elasmobranch movement ecology

    Get PDF
    Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements

    A Hydrodynamic Model of Alfvénic Wave Heating in a Coronal Loop and Its Chromospheric Footpoints

    Get PDF
    Alfv\'enic waves have been proposed as an important energy transport mechanism in coronal loops, capable of delivering energy to both the corona and chromosphere and giving rise to many observed features, of flaring and quiescent regions. In previous work, we established that resistive dissipation of waves (ambipolar diffusion) can drive strong chromospheric heating and evaporation, capable of producing flaring signatures. However, that model was based on a simplified assumption that the waves propagate instantly to the chromosphere, an assumption which the current work removes. Via a ray tracing method, we have implemented traveling waves in a field-aligned hydrodynamic simulation that dissipate locally as they propagate along the field line. We compare this method to and validate against the magnetohydrodynamics code Lare3D. We then examine the importance of travel times to the dynamics of the loop evolution, finding that (1) the ionization level of the plasma plays a critical role in determining the location and rate at which waves dissipate; (2) long duration waves effectively bore a hole into the chromosphere, allowing subsequent waves to penetrate deeper than previously expected, unlike an electron beam whose energy deposition rises in height as evaporation reduces the mean-free paths of the electrons; (3) the dissipation of these waves drives a pressure front that propagates to deeper depths, unlike energy deposition by an electron beam.Comment: Accepted to Ap
    • …
    corecore