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Abstract

Alfvénic waves have been proposed as an important energy transport mechanism in coronal loops, capable of
delivering energy to both the corona and chromosphere and giving rise to many observed features of flaring and
quiescent regions. In previous work, we established that resistive dissipation of waves (ambipolar diffusion) can
drive strong chromospheric heating and evaporation, capable of producing flaring signatures. However, that model
was based on a simplified assumption that the waves propagate instantly to the chromosphere, an assumption that
the current work removes. Via a ray-tracing method, we have implemented traveling waves in a field-aligned
hydrodynamic simulation that dissipate locally as they propagate along the field line. We compare this method to
and validate against the magnetohydrodynamics code Lare3D. We then examine the importance of travel times to
the dynamics of the loop evolution, finding that (1) the ionization level of the plasma plays a critical role in
determining the location and rate at which waves dissipate; (2) long duration waves effectively bore a hole into the
chromosphere, allowing subsequent waves to penetrate deeper than previously expected, unlike an electron beam
whose energy deposition rises in height as evaporation reduces the mean-free paths of the electrons; and (3) the
dissipation of these waves drives a pressure front that propagates to deeper depths, unlike energy deposition by an
electron beam.
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1. Introduction

Alfvén waves, first predicted by Alfvén (1942) and verified
by Lundquist (1949a, 1949b), occur throughout the solar
atmosphere, from the chromosphere (De Pontieu et al. 2007)
through the corona (Tomczyk et al. 2007; McIntosh et al.
2011), extending out into the heliosphere with the solar wind
(Belcher & Davis 1971). The dissipation of waves has been
shown to heat and accelerate particles in solar and stellar winds
(Suzuki & Inutsuka 2005; van Ballegooijen & Asgari-Targhi
2016) as well as cosmic rays (Fermi 1949; Lazarian 2016).
Their potential to heat the corona was quickly reco-gnized
(Alfvén 1947), and heating due to their dissipation is still
considered a plausible solution to the coronal heating problem
(Klimchuk 2006; van Ballegooijen et al. 2011; Reale 2014).
Alfvén waves are generated in the convection zone, as well as
in the chromosphere by shock collisions (Osterbrock 1961),
where they propagate upward, possibly dissipating their energy
in the chromosphere (Arber et al. 2016). A ponderomotive
force due to the propagation of Alfvén waves acting on ions in
the chromosphere has been suggested as an explanation for the
first ionization potential effect (Laming 2015), as well as
affecting the streaming of stellar winds (Belcher 1971), and the
force due to downward waves can drive acoustic waves
that can then cause sunquakes (Russell et al. 2016). The recent
article by Russell (2017) summarizes some of the major
developments in the 75-year history of Alfvén waves in solar
physics.

In this work, we focus on Alfvén waves generated via
reconnection events in the corona. Although it is expected that

waves are generated during the reconnection events that drive
flares and nanoflares (Parker 1991; Takeuchi & Shibata 2001;
Shibata & Moriyasu 2003; Kigure et al. 2010; Jelínek
et al. 2017), it is not currently known what fraction of the
released energy they carry, with what frequencies they
oscillate, or whether they cause heating that helps to power
the emitted radiation. Simple arcade models suggest that the
waves occur across a spectrum without an upper bound on
frequency (Oliver et al. 1993; Tarr 2017). Fletcher & Hudson
(2008) showed that Alfvén waves generated in the corona and
propagating downward might carry a significant fraction of
the released magnetic energy during a flare, later supported by
simulations of three-dimensional reconnection (Birn et al.
2009), and they perhaps could cause acceleration of particles in
the chromosphere. Haerendel (2012) examined the possibility
that the auroral acceleration process may take place in solar
flares, whereby a release of magnetic shear stress due to Alfvén
waves is converted into kinetic energy of particles. A recent
study with the New Solar Telescope found evidence for
downward moving waves in a large solar flare, where their
impact in the lower atmosphere possibly triggered a sunspot
rotation (Liu et al. 2016).
The propagation of waves into the chromosphere has

received significant attention in recent years. Haerendel
(2009) showed that such waves carry sufficient energy to heat
the chromosphere via turbulent phase mixing, and thus drive
chromospheric evaporation. With a linearized magnetohydro-
dynamics (MHD) model, Russell & Stackhouse (2013)
confirmed that Alfvén waves can deliver concentrated energy
flux to the chromosphere. Russell & Fletcher (2013) developed
a model of energy transmission as waves propagate beyond the
transition region and found strong resistive damping in the
chromosphere due to ion-neutral friction, with a strong
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dependence on frequency. Ion-neutral friction is well estab-
lished as one of the primary damping mechanisms of Alfvén
waves (Piddington 1956), and in recent years the governing
theory has received significant attention (Soler et al. 2013,
2015a; Leake et al. 2014; Khomenko 2017). The effectiveness
of ion-neutral friction depends on the local field strength, and is
most efficient when the Lorentz force is strong compared to
other dynamic forces (Soler et al. 2015b).

In partially ionized plasma, the components of an electric
current parallel or perpendicular to the magnetic field dissipate
differently, due to collisions between the ionized plasma and
neutral gas. This anisotropic dissipation has been extensively
covered in a broad range of fields, such as ionospheric/
thermospheric physics, astrophysics, as well as solar physics.
While the governing physics remain the same, the breadth of
application has led to different names and conceptualizations
being used to describe the dissipation of perpendicular currents
by plasma-neutral collisions: Cowling resistivity (Cowling
1956; Leake et al. 2005), Pedersen resistivity (Haerendel 2006;
Goodman 2011), and ambipolar diffusion (Zweibel 1989;
Martínez-Sykora et al. 2012, 2017) are all terms related to the
dissipation of perpendicular currents by plasma-neutral colli-
sions. The discussions by Zweibel et al. (2011) and Leake et al.
(2014) explain the differences of origin and emphasis between
the terms. The recent applications in solar physics include wave
propagation and dissipation (de Pontieu 1999; De Pontieu et al.
2001; Leake et al. 2005; Brady & Arber 2016; Soler et al.
2016), mass and magnetic flux transport (Martínez-Sykora
et al. 2012, 2017; Leake & Linton 2013), chromospheric
heating (Goodman & Kazeminezhad 2010), and magnetic
reconnection (Ni et al. 2015). Applied to our topic, the various
terms are simply different names for the same anisotropic
dissipation of electric currents. We will primarily use the
terminology of ion-neutral friction or Cowling resistivity.

A few models have been developed to study the hydro-
dynamic evolution of solar plasma due to wave heating. Emslie
& Sturrock (1982) developed a WKB formulation of resistive
dissipation of Alfvénic waves launched in the corona in order
to explain temperature minimum heating observed in large
flares (Machado et al. 1978; Emslie & Machado 1979).
Adopting this model with a correction for ambipolar diffusion,
Reep & Russell (2016) showed that waves can also strongly
heat the upper chromosphere and produce explosive evapora-
tion. Kerr et al. (2016) confirmed these results, and further
showed that chromospheric lines such as Mg II could
distinguish between Alfvénic wave heating and electron beam
heating in flares, offering an important observational test. In
these studies, however, it was assumed that the waves
propagate instantly from their injection location to the depths
where they damp. The assumption is justified for heating by a
beam of electrons, where electrons with energy>10 keV travel
at speeds  »c0.2 60 Mm s−1. Waves, however, travel at
the local Alfvén speed, which is typically <10 Mm s−1 in
the corona (although it may approach c0.1 in the corona of
some active regions Fletcher & Hudson 2008; Russell &
Fletcher 2013), and significantly slower elsewhere. The
damping of waves affects the atmosphere on a similar time-
scale as the wave travel times, so travel times should not
be neglected.

The model in Reep & Russell (2016) required high
frequencies (1 Hz) for effective dissipation of wave energy,
and so the frequency spectrum of waves in the corona is

important to study. DeForest (2004) directly observed
frequencies as high as 0.1 Hz with TRACE in the 1600Å
passband. Eclipse observations have also shown the presence
of intensity oscillations of the order of 1–10 Hz (Pasachoff
et al. 2002; Rudawy et al. 2004), although it is possible that
those fluctuations are not due to Alfvén waves (Rudawy
et al. 2010). Microwave and radio bursts during solar flares
have revealed oscillations of the order of 10–100 Hz (Kiplinger
et al. 1983; Kaufmann et al. 1984). As these frequencies are at
the limit of current instrumental cadence, it is unclear whether
higher cadence instruments would reveal the presence of higher
frequencies, and if so, their importance to the physical
processes occurring in the solar atmosphere. The next
generation of solar instrumentation, in particular, the suite of
instruments to come online in 2019–2020 at the Daniel K.
Inouye Solar Telescope (Elmore et al. 2014), will have the
cadence and sensitivity to probe the super-hertz frequency
range of MHD waves in the low corona, offering a first look at
whether such waves are present in the corona, if they are
generated by reconnection, and what their energetic importance
may be.
In this work, we directly examine the propagation of Alfvén

waves by implementing a ray-tracing code that follows the
waves as they travel and damp along a coronal loop in a one-
dimensional hydrodynamics simulation. We describe the
implementation and necessary physics in Section 2. We
compare this implementation to the MHD code Lare3D in
Section 3. We then directly compare the results of heating due
to propagating waves with the previous work that assumed
instantaneous travel times, as well as with an electron beam, in
Section 4.

2. Relevant Physics and Implementation

We have implemented traveling Alfvén waves in the
HYDrodynamics and RADiation code (HYDRAD, Bradshaw
& Mason 2003), which solves the equations of conservation of
mass, momentum, and energy for a two-fluid plasma confined
to an isolated magnetic flux tube (equations and details are
listed in Bradshaw & Cargill 2013). The code includes adaptive
mesh refinement of arbitrary order, important for resolving
rapid jumps in the temperature or density profiles, which can
lead to improper estimates of coronal properties if not properly
treated (Bradshaw & Cargill 2013). Radiative losses are treated
with a full calculation of emissivities from abundant ions using
CHIANTI version 8 (Dere et al. 1997; Del Zanna et al. 2015),
with the ability to simultaneously solve for non-equilibrium
ionization populations of any desired element (Bradshaw &
Raymond 2013). The code is quick, robust, and computation-
ally inexpensive.
Alfvén waves have long been considered important to the

dynamics of energy transport in the solar atmosphere. They
cannot be treated in pure hydrodynamic (HD) codes, which are
designed to study energy transport but do not solve the full set
of MHD equations. On the other hand, MHD codes generally
do not have a full treatment of thermodynamics, or the proper
resolution to resolve the transition region, which often means it
is difficult to properly understand the evolution of a loop’s
hydrodynamics (Bradshaw & Cargill 2013). We wish to bridge
the gap between these two approaches, and implement a
method that allows us to study Alfvén wave dissipation in an
HD code.

2
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We therefore introduce a new method to describe waves as
pulses of period-averaged Poynting flux propagating along a
loop, which we trace with individual rays at various points
along the pulse. Figure 1 illustrates this. We inject a pulse with
a certain initial Poynting flux, comprised of a number of rays N
that approximate the spatial extent of a pulse. In Figure 1, this
initial pulse is represented by the solid red curve, which has
been divided into seven rays, each with their own position and
Poynting flux (red plus signs, offset by an arbitrary factor). In
order to trace the motion of the whole pulse, each ray is
individually advected along the loop in the direction of
propagation at the local Alfvén speed (which may differ for
each ray), and the Poynting flux is decreased according to the
local damping length (see Section 2.1). The blue curve in
Figure 1 represents the pulse at some time later, where the
Poynting flux has decreased, and the spatial extent has
narrowed due to a decreasing Alfvén speed. As a result, the
rays are closer together, especially near the leading edge of the
pulse.

In order to inject a pulse onto the loop, we initialize the rays
one at a time. If the pulse is injected at time t0, the first ray is
created at time t0, with a position z0 corresponding to the
location of injection and Poynting flux equal to the pulse’s
initial flux S0. Supposing that there are >N 1 total rays
comprising the pulse, and the duration of the pulse is tdur, the
next ray is created at time t= + -( )t t N 11 0 dur , the next at

t= + -( )t t N 12 1 dur , and so on until the last ray is created at
time t= +-t tN 1 0 dur. Between times t0 and t1, the first ray is
appropriately advected, between t1 and t2, the first two rays are
advected, etc.

The number of rays N comprising a pulse must be high
enough to both capture the spatial extent of that pulse and to
capture small-scale changes in the Alfvén speed and damping
lengths, particularly in regions of large gradients. If the
duration is longer, the spatial extent is greater, and so requires
more rays to capture the full extent and sharp gradients.
Furthermore, with the WKB method, we need not resolve the
wavelength, but we do need to resolve changes in the damping
length. We therefore choose the number of rays N to be 50 rays
per second of injection duration, or t=N 50 dur, which we

have found through simple tests to accurately capture the
heating while not being too demanding computationally.
The input for the waves is general: the user specifies the

number of pulses, and, for each one, the start time, duration,
injection location along the loop, direction of propagation,
initial Poynting flux, frequency, and perpendicular wave
number (at the photosphere). The code then divides each pulse
up into a number of rays that are traced in time and position.

2.1. Ray Tracing

At each numerical time step, the code first checks to see if
any new rays need to be initialized, i.e., if the current time is
between the starting injection time t0 and the final injection
time t+t0 dur for any pulse. If so, new rays are created at the
specified location with the specified properties of the pulse to
which they belong (as described in the previous section).
All currently existing rays are then advected at each time

step. The rays travel at the local Alfvén speed vA(z), from an
initial position z0 to a final position zf. In general, the pulse will
have arbitrary spatial extent and span numerous grid cells, each
with a distinct Alfvén speed, so that the rays propagate at
different speeds. The ray positions are continuous, while the
physical variables (and the local Alfvén speed defined by them)
are defined on the discrete grid. We must therefore carefully
treat each ray’s propagation and damping within the discrete
system.
Suppose the bounds of a grid cell are given by z1 and z2, with

Alfvén speed vA between those bounds. We assume that the
Alfvén speed is constant within a grid cell for simplicity,
though a more general treatment could interpolate the value for
any point within the cell. For a ray position < <z z z1 ray 2, the
time to traverse the grid cell is given by

t =
-

( )
z z

v
. 1

A

2 ray

We have two cases then. In the first, the numerical time step
tD <t , i.e., that the current time step is smaller than the time

for the ray to move to the next grid cell, in which case the ray is
advected by

D = D ( )z v t. 2A

In the second case, tD >t , i.e., that the ray moves into a new
grid cell in the current time step, we use a recursive function to
then find the new ray position. Numbering each successive grid
cell from the starting position of the ray, the new ray position is
then:

å

t t t

t

D = + + +

=
=

( )

z v v v

v

...

, 3

A A A N N

i

N

A i i

,0 0 ,1 1 ,

0
,

which is continued recursively, while tD > å =t i
N

i0 . When that
condition fails, we advance the ray in the final grid cell by the
distance t´ D - å =( )v tA i

N
i0 .

All of the rays are advected appropriately at each time step
with this method. Simultaneously, we calculate the reduction in
their Poynting fluxes due to resistive dissipation according to
the local damping lengths (given in Section 2.2). Specifically,
the decrease of Poynting flux from z0 to zf follows the general

Figure 1. Example diagram of a pulse traveling to the left (solid, represented as
a Poynting flux—energy per area per time), being traced with seven rays in
time (plus signs to denote locations). Each ray travels at the local Alfvén speed,
which can vary in both time and position, assumed to be decreasing to the left
here. As the rays propagate, the Poynting flux at each ray decreases as the pulse
damps, but they become “bunched up” in space. In general, the shape of the
Poynting flux curve with time depends on the variable spacing between rays
and the flux at each one.
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equation

ò= -
¢
¢

⎛
⎝⎜

⎞
⎠⎟( ) ( )

( )
( )S z S z

dz

L z
exp , 4f

z

z

D
0

f

0

which is applied to each ray as their locations are updated.

2.2. Heating

The heating terms follow the same basic equations as those
in Reep & Russell (2016), except that the heated locations are
now limited to those grid cells that contain a pulse at a given
time. The code loops across the numerical grid, locating the
start and end positions of each pulse (i.e., the positions of
the first and last ray in a pulse). If a grid cell is located between
the leading and trailing edge of a pulse, then the grid cell is
assumed to be heated by the resistive dissipation of that pulse
as it passes through. After the rays have been advected forward
and their Poynting fluxes appropriately decreased, that lost
energy is taken to heat the local plasma. The heating function is
given in general by

=- =

= + º +
-

-
⎛
⎝⎜

⎞
⎠⎟

( ) ( ) ( )
( )

( ) ( )

Q z
dS z

dz

S z

L z

S z
L L

Q Q
1 1

, 5

D

e H
e H

which defines the split between the electron heating term and
the hydrogen heating term in terms of the damping lengths:

=-

-

( ) ( )Q
S z

L
6e

e

=
( ) ( )Q

S z

L
. 7H

H

The damping lengths are given by

h
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A A
C
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2 2

3

where kx(z) is the local perpendicular wave number (which we
assume varies as =( )k z kx x a

B

B,
a
for kx a, and Ba the values at the

apex of the loop), ω the angular frequency, c the speed of light
in vacuum, vA(z) the local Alfvén speed, and h( )z and h ( )zC the
parallel and Cowling resistivities (due to ion-neutral friction,
Cowling 1956), given by

h h h

n n r
n r x q

= +

=
+

+
+

^ 

( )
( )

( )m

n e

B

c 1
, 9

C

e ei en

e

n

ni t
2

2

2 2 2 2

where me is the electron mass, B(z) is the magnetic field
strength, r ( )z is the mass density, and n ( )z is the collision
frequencies. The subscripts i, e, n, and t refer to electron, ion,
neutral, and total, respectively. As in Reep & Russell (2016),
we define x = r

r
i

t
and q = w

nni
, and modify the Alfvén speed due

to the presence of neutrals:

pr
xq
x q

=
+
+

⎛
⎝⎜

⎞
⎠⎟( ) ( )v z

B

4

1

1
. 10A

t

2

2 2

1 2

This expression reduces to the standard form of the Alfvén
speed in the limit of a fully ionized plasma.
The damping lengths are calculated locally at each time step,

and each ray has its Poynting flux decreased using the local
length in each cell it traverses. The heating rate in a grid cell is
then found by interpolating the Poynting flux at the center of
the grid cell using the two nearest rays. Consequently, there is a
small error associated with the finite width of the grid cells: the
heating rate is more accurate for small grid cells.
In order to partition the energy between the two species, we

can also rewrite the equations more directly in terms of the total
heating rate:

=-

-
( ) ( ) ( )

( )
( )Q z Q z

L z

L z
11e

D

e

=( ) ( ) ( )
( )

( )Q z Q z
L z

L z
. 12H

D

H

Then, each term is added to its respective energy equation.

2.3. Time Step

As mentioned before, if the current time is between the initial
injection time t0 and final injection time t+t0 dur for any pulse,
new rays must be created at an appropriate time step
t -( )N 1dur for the number of rays N in the pulse. If N is
large, then this time step becomes tiny and may become smaller
than the numerical time step Dt of the code. When this
happens, some rays might fail to be properly injected. To avoid
this problem, we introduce a new timescale to HYDRAD to
ensure that all rays are properly created.
At a given time, if there is at least one pulse being initialized,

we set a new timescale to one-tenth of the time between each
successive ray (which is rather cautious, for computational
speed this could be increased up to one-half of the time
between rays). That is, for a duration of injection tdur and
number of rays N, the new timescale is t = t

Nrays 10
dur . Then, this

timescale is guaranteed to be smaller than the time between the
creation of each ray, and each one will be properly initialized.
This timescale is then calculated for each pulse currently

being injected, compared to the other relevant timescales, and
then the time step in the simulation is set to the minimum
timescale, as is generally done with HYDRAD (Bradshaw &
Cargill 2013). In this way, we insure that all rays are properly
injected, and that the CFL condition is met.

3. Comparison to Lare

To validate that the ray-tracing method reproduces the
correct propagation and dissipation, we first compare our
implementation of the WKB wave-packets with the magneto-
hydrodynamics Lagrangian–Eulerian Remap 3D code (Lare3D,
Arber et al. 2001). We present brief results necessary for
validation here, but postpone a detailed comparison of the HD
and MHD codes for a later work. In the next section, we
present the detailed results of propagating wave simulations
with HYDRAD.
Lare3D is a parallel code that solves the full set of nonlinear

MHD equations by first taking a Lagrangian step with each
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computational cell and, second, conservatively remapping the
result back to the original Eulerian grid. This method allows for
shocks to be properly resolved and can be readily adapted to
include most physical processes. We use the modified MHD
equations, which include the effects of partial ionization and
Cowling resistivity (Leake et al. 2005). We use this modified
Lare code in 1.5D (only one dependent variable, but all
components of the 3D vector are evolved) to model a one-
dimensional coronal loop (similarly done by other authors, e.g.,
Johnston et al. 2017a, 2017b), and introduce an Alfvénic wave
pulse in order to compare to our new method in HYDRAD. We
use a grid spacing of 460 m in Lare, and do not include the

effects of radiative losses or thermal conduction. The ray-
tracing method presented here includes only Alfvénic perturba-
tions. Therefore, in the Lare3D simulation that we use to verify
and validate the method, we remove the nonlinear coupling of
Alfvénic perturbations into longitudinal perturbations. Future
studies will examine the fully nonlinear MHD system, along
with mode-coupling and multi-dimensions, as well as the
thermodynamics appropriate for the coupled chromosphere-
corona.
We have tuned the initial conditions of the Lare simulation

to match the HYDRAD ones as closely as possible. We show
the initial conditions of both codes in Figure 2, from left to
right and top to bottom: the temperature, number densities,
ionization fraction, initial Alfvén speed and sound speed,
resistivities, and damping lengths for both HYDRAD (black)
and Lare (red), calculated with wave frequency f=10 Hz,
perpendicular wave number =k 0x , and B(z) profile as in
Russell & Fletcher (2013). Since =k 0x , the current is
perpendicular to the magnetic field and damping is determined
by ĥ .
Although HYDRAD and Lare are given essentially the same

initial conditions, they are fundamentally different codes that
solve different equations; therefore, the resulting dynamics will
not always agree. One major point of comparison is that we
have not implemented reflection into HYDRAD, which arises
in Lare because it solves the full MHD equations. At the region
of largest Alfvén speed gradient, around the transition region
(Figure 2), waves with low frequency will reflect back into the
corona. Figure 3 shows the energy transmission coefficient,
measured as a ratio of the transmitted Poynting flux to the
original Poynting flux, as a function of wave-packet frequency.
While reflection at frequencies at or below 1 Hz dominate, it is
reasonable to assume that for frequencies2 Hz, the use of the
current HYDRAD implementation without reflections is
reasonable, though the inclusion of reflection would be an
important generalization of the current method.

Figure 2. Comparison of the initial values of the simulations for one-half of a loop of length =L2 60 Mm. In all of the plots, HYDRAD values are shown in black,
Lare in red. On top, from left to right, are the temperature, number densities, and ionization fraction of hydrogen as a function of position. On the bottom, for the
assumed magnetic field strength profile, are the Alfvén and sound speed, resistivities, and damping lengths of the waves (assuming frequency f = 10 Hz, perpendicular
wave number =k 0x , and a constant B=107.9 G.

Figure 3. Energy transmission coefficient at the transition region as a function
of frequency in the Lare simuations for the chosen Alfvén speed profile. High-
frequency waves pass mostly unimpeded through the TR, while low-frequency
waves reflect a large portion of their Poynting flux. The results are comparable
with Russell & Fletcher (2013).
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We have therefore run a simulation with both HYDRAD and
Lare, using a frequency f=10 Hz and perpendicular wave
number =k 0x a, . To partially account for the absence of
reflection, we use a Poynting flux of 109 erg s−1 cm−2 in Lare,
which we reduce by the reflection coefficient (»10%) in
HYDRAD. In order to facilitate comparison, we do not allow
the plasma to be heated, which would cause discrepancies in
the temperature and ionization fraction between Lare and
HYDRAD. In other words, the initial profile is maintained
throughout the simulation to ease the comparison.

Figure 4 shows a few snapshots of this comparison
simulation near the top of the chromosphere, shortly after the
waves impinge upon it. The plot on the left shows the period-
averaged Poynting flux as a function of position, at times 3 s
(blue) and 4 s (red) into the simulation. HYDRAD is shown
with points (each ray), and Lare as a solid line. The plot on the
right shows the derived heating rate as a function of position.
The slight discrepancies at the trailing edge of the pulse are due
to reflection, where some of the Poynting flux has begun to
propagate in the opposite direction in the Lare simulation.

While there are differences between the two simulations,
primarily due to reflection, which has not been included in
HYDRAD, we find that the ray-tracing method reproduces the
approximate behavior of the MHD code. There are differences
that can be addressed in future iterations to further improve
the comparison: the aforementioned reflection, the pondero-
motive force, a method to treat mode conversion, etc. Although
these limitations exist, this method faithfully captures the

propagation and resistive dissipation of waves through a field-
aligned flux tube. In the Appendix, in order to demonstrate the
current limitations of this method, we show a comparison of a
low-frequency case, where the effect of reflection is more
pronounced.

4. Results

The comparison to Lare validated our implementation of a
WKB approximation for wave propagation and damping in a
hydrodynamic code. We now perform a detailed examination
for different wave-packet parameters, with and without
accounting for travel times. We have run simulations with
HYDRAD to examine the hydrodynamics. We use a loop
length =L2 60 Mm, assumed semi-circular and oriented
vertically relative to the solar surface. We use the magnetic
field strength profile B(z) as specified in Russell & Fletcher

(2013) in all the simulations here: = ( )( ) ( ) ( )
( )

B z B 0 P z

P 0

0.139
for

the initial pressure profile calculated from the hydrostatic
equations, and a constant field strength of »100 G in the
corona. We assume a photospheric value of 1000 G, as in Reep
& Russell (2016). This is an empirical fit intended to allow the
field to vary smoothly across the chromosphere, though as
Russell & Fletcher (2013) note, it is difficult to observationally
measure the field strength across the chromosphere so that this
is an assumed profile.
We first examine the damping of Poynting flux at various

frequencies. Figure 5 shows the Poynting flux in three HYDRAD

Figure 4. Comparison between a wave simulation with HYDRAD (points) and Lare (lines), which compare favorably in terms of propagation, damping, and heating
in general. The waves have a frequency f=10 Hz, and initial Poynting flux of 109 erg s−1 cm−2, reduced by about 10% in the HYDRAD simulation to account for
reflection. The left-hand plot shows the period-averaged Poynting flux at times 3 s (blue) and 4 s (red) into the simulation, shortly after the pulse reaches the transition
region where it strongly damps. The right-hand plot shows the heating rate derived from the damping at the same times.

Figure 5. Poynting flux as a function of position and time (colors, from violet to red) for three simulations with a single 1 s pulse of frequency of 1 Hz (left), 3 Hz
(center), and 10 Hz (right), and perpendicular wave number =k 0x , traveling to the left-hand side of the loop. Each plus sign denotes the location and flux of an
individual ray, while the connecting solid lines denote the interpolated Poynting flux. The times are plotted at a 2 s cadence, for a total of 100 s past the initial
injection. The black dashed line denotes the decrease of Poynting flux for the instant-travel method used in Reep & Russell (2016), for comparison.
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simulations for one-second pulses with =S 100
9 erg s−1 cm−2,

= [ ]f 1, 3, 10 Hz, =k 0x , propagating to the left. The colors
ranging from violet to red show different time steps, at a 2 s
cadence, for a total of 100 s after the initial injection of the pulse.
Each plus sign denotes the location and flux of a single ray, while
the lines connecting them denote the interpolated Poynting flux at
a given position. The pulses take just over 3 s to reach the
transition region, where they begin to damp. As each pulse
propagates down the loop, the Poynting flux decreases appro-
priately, with high-frequency pulses dissipating more rapidly,
though even the 10Hz case takes well over 10 s to fall to 10% of
its initial Poynting flux. By way of comparison, we over-plot the
damping locations determined by the method used in Reep &
Russell (2016), shown as black dashed lines. In all cases, the
instant-travel method damps slightly higher in the atmosphere

than the ray-tracing method, and the travel time is too significant
to be ignored. The difference in damping locations is exacerbated
at high frequencies.
We now compare the new method to Reep & Russell (2016) in

order to better understand the effect of propagation delays.
Figure 6 shows the hydrodynamic variables in a simulation with
initial Poynting flux =( )S z 100

10 erg s−1 cm−2, perpendicular
wave number at the apex = -k 10x a,

5 cm−1, and frequency
f=10 Hz, which can be compared to the top row of Figure 1 in
Reep & Russell (2016). The colors show snapshots of the
simulation every second, ranging from violet to red. The x-axis is
shown on a logarithmic scale to emphasize the chromosphere of
the loop, which has a total length =L2 60 Mm, so that the apex
is at a position 30Mm. The first plot shows the total (electron +
hydrogen) heating rate (erg s−1 cm−2) versus curvilinear position

Figure 6. Hydrodynamic variables for a pulse with a duration of 10 s, with =( )S z 100
10 erg s−1 cm−2, = -k 10x a,

5 cm−1, and f=10 Hz (compare top row of Figure 1
in Reep & Russell 2016). The different colors, going from violet to red, show the values at a one-second cadence for the first 10 seconds of the simulation. Right-flowing
velocities are defined as positive, left negative. The black dashes on the heating plot mark the initial background heating level. The plots have been truncated at a position
just beyond the apex of the loop.
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(with the background heating level included—the black dashed
line), followed by the electron temperature (K), hydrogen
temperature (K), bulk flow velocity (km s−1), electron density
(cm−3), and total hydrogen density (cm−3).

It takes roughly 3 s for the wave to reach the chromosphere
(with the assumed field strength), so that there is only weak
coronal heating before that time. After it impinges on the
chromosphere, the pulse begins to dissipate, and the pulse
slows as the Alfvén speed decreases due to an increasing
density. It takes roughly 7 s to travel 1 Mm below the transition
region, while the heating slowly grows with depth. Since the
perpendicular wave number is small, the Cowling resistivity
initially dominates the energy dissipation terms, so that the
hydrogen temperature rises more than the electron temperature,
though both only increase modestly. As the pulse propagates,
the plasma is ionized, reducing the Cowling resistivity, so that
at later times damping due to electron collisions becomes the
dominant term. Figure 7 shows the resistivities and damping
lengths in the simulation, demonstrating the reduction in
Cowling resistivity. This indicates the importance of the
ionization level in determining the depth and rate at which
waves dissipate. The parallel resistivity also decreases slightly
as the electron density increases due to the change in
ionization. As with the simulation in Reep & Russell (2016),
the bulk flow velocity evaporates gently. As the chromosphere
heats, the ionization fraction rises, locally raising the electron

density, while the weak evaporation carries a small number of
both electrons and ions into the corona.
For this same simulation, we show the partition of

instantaneous heating rate into hydrogen and electrons in
Figure 8. The left plot shows the fraction of dissipated energy
that heats the hydrogen, while the right plot shows the fraction
that heats the electrons. The background heating is assumed to
go entirely into electrons. In this case, since the perpendicular
wave number kx is small, a significant fraction of the energy
goes into heating the hydrogen directly, reaching above 80% at
the leading edge of the pulse, and remaining close to 50%
trailing that.
In Figure 9, we show a simulation with a higher

perpendicular wave number = ´ -k 4 10x a,
4 cm−1 (but other-

wise equal parameters), which increases the relative importance
of parallel dissipation. Due to the rise in parallel dissipation
(both ion–electron and electron–neutral collisions), the heating
is stronger in both the corona and upper chromosphere, and
peaks more sharply. As a result, the electron temperature rises
all across the corona, spreading outward from the apex of the
loop at z=30Mm and into the chromosphere. The hydrogen
temperature rises sharply here as well, driving strong, explosive
flows, and is comparable to the same case in Reep & Russell
(2016; middle row of Figure 1 in that paper). Since the energy
is deposited higher in the chromosphere, the waves do not
travel as deep before dissipating, so the rise in ionization does
not occur as deep as in the previous case.

Figure 7. Resistivities (left) and damping lengths (right) at the same times in the same simulation as Figure 6. As the pulse propagates downward ionizing the plasma,
the Cowling resistivity is reduced, thus causing damping due to electron collisions to become dominant at later times at the same depths. As before, the colors show
different times, at a 1 s cadence, from violet to red.

Figure 8. Partition of the heat as a function of position and time for the simulation in Figure 6. The left plot shows the fraction of dissipated energy that heats
hydrogen, the right plot shows the fraction that heats electrons. The background heating is assumed to go entirely into electrons.
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As mentioned before and shown in Figure 7, as a pulse
propagates into the chromosphere and dissipates its energy, the
ionization fraction and electron density grow, thus decreasing
both the Cowling and parallel resistivities. The trailing end of a
long duration pulse, or any subsequent pulses, therefore
propagate to greater depths into the chromosphere than the
leading edge (or pulse) because of that reduction in the res-
istivity. Effectively, earlier pulses bore a hole into the
chromosphere that allows later ones to penetrate deeper and
deeper, even at frequencies expected to strongly dissipate high
in the initial chromosphere. Heating due to the dissipation,
therefore, effectively propagates downward.

This behavior is opposite to that of an electron beam. As a
beam deposits its energy in the chromosphere, driving
evaporation into the corona, the mean-free path of any later
electrons is significantly reduced due to the rise in coronal

density. The result is that the location of energy deposition for
long duration beams rises into the corona and becomes more
and more localized near the injection site, as shown, for
example, in Figure 3 of Reep et al. (2015).
There is therefore an important distinction in the heating

profiles between the cases of Alfvén waves and electrons
beams. Electrons propagating down a loop are stopped as they
collide with ambient plasma, in particular, as the density rises
in the chromosphere, thus shortening their mean-free paths.
Before there is significant evaporation into the corona,
electrons deposit their energy at an approximately constant
depth, as their mean-free paths do not change (assuming there
are no significant time-varying changes in the beam, such as an
increase in the low energy cut-off). This is in stark contrast to
the case of Alfvén waves, which propagate significantly more
slowly than beams, and deposit energy across more of the

Figure 9. Similar to Figure 6, with = ´ -k 4 10x a,
4 cm−1 and f=10 Hz (compare to the middle row of Figure 1 in Reep & Russell 2016).
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chromosphere as the density rises. The difference in energy
deposition locations causes differences in the pressure,
ionization, and flows.

We can directly compare the behavior for beam and wave
heating. In Figure 10, we show the electron pressure profiles as
a function of position at three select times for an Alfvén wave
simulation with f=10 Hz, = ´ -k 4 10x

4 cm−1, and =( )S z0
1010 erg s−1 cm−2 (top row) and an electron beam with low
energy cut-off =E 10 keVc , spectral index d = 5, and energy
flux =F 100

10 erg s−1 cm−2 (bottom row), using the heating
form derived by Emslie (1978). We have colored the locations
by the local flows, blue where the plasma is up-flowing, red
where it is down-flowing, and white where it is stationary. The
white dots indicate the initial profile. The spike in the
chromospheric pressure propagates downward in the case of
the waves, whereas in the case of the beam it does not reach
progressively greater depths. In both cases, a pressure front
begins to rise into the corona and evaporate plasma, although it
travels at a higher speed for the beam.

In Figure 11, we show the electron density profiles in a
similar manner to the previous figure. As noted before, as
Alfvén waves propagate to deeper depths, they cause a
downward propagating ionization spike, thus raising the local
electron density while simultaneously driving up-flows into the
corona. In the case of a beam, however, the plasma at the depth
of energy deposition becomes ionized, but there is no
propagation of that ionization spike.

These differences in the ionization, flows, and pressures
suggest stark differences in chromospheric line profiles. Using
the instantaneous method, Kerr et al. (2016) found that the
Mg II k line behaved differently in an electron beam simulation
from an Alfvén wave simulation. Specifically, the central
reversal of the line gradually disappears, and the line develops

a strong red–blue asymmetry in the wave simulation, while the
line remains roughly symmetric with a strong central reversal
during the electron beam simulation. On the other hand, the
Ca II 8542Å line was similar in both simulations, with a small
difference in the Doppler shifts. The inclusion of travel time
effects would likely exacerbate the differences found by those
authors, which warrants a deeper investigation. Other authors
have similarly reported discrepancies in the modeling of the
Mg II lines when modeled with an electron beam (e.g., Rubio
da Costa et al. 2016), which warrants further examination.
Because these properties all vary with chromospheric depth and
with time, in principle, they could be probed by high cadence
spectrometry (1 s) to track the propagation of these waves and
to measure the hydrodynamic profiles in time. We plan to
address these possibilities in future work.

5. Conclusions

In this work, we have updated the model from Reep &
Russell (2016) to include travel time effects due to the
propagation of Alfvénic waves. The method is sufficiently
general to be implemented in any hydrodynamics model that
does not solve the MHD wave equations. To test that this
method is valid, we have compared it against the MHD code
Lare3D, adapted for a field-aligned flux tube, and found
generally good agreement.
We have drawn a number of important conclusions from

this work:

(1) Alfvénic waves can heat all levels of the chromosphere,
and the damping of these waves depends strongly on not
only the wave parameters, but also the ionization level.
Ion-neutral friction is extremely efficient at damping
waves, so a high proportion of neutral atoms greatly

Figure 10. Comparison of the development of the pressure profiles of loops heated by an Alfvén wave (top) and electron beam (bottom). In the case of the wave,
because it propagates increasingly deep, the spike in pressure propagates downward. In the case of the beam, the electrons reach essentially the same depth
continually, so that the pressure spike does not move. The colors on this plot refer to the local velocity, colored blue where the plasma is up-flowing, red where it is
down-flowing, and white where it is stationary. Down-flowing velocities are defined as positive in this and the next figure. The white dotted line shows the initial
profile.
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increases the damping of Alfvén waves, while a low
proportion means that waves travel mostly unimpeded.

(2) Because waves ionize the plasma as they propagate
through the chromosphere, early waves effectively bore a
hole in the chromosphere through which later waves can
more readily propagate without significant dissipation.
Successive waves penetrate to ever greater depths, and
high-frequency waves penetrate significantly deeper than
expected from our previous paper. This contrasts directly
with the well-known result for electron beams: as
evaporation brings material into the corona, later
electrons have a shortened mean-free path. The height
at which beams deposit their energy therefore tends to
travel upwards along the loop for long duration heating
(see, e.g., Reep et al. 2015).

(3) The propagation of these waves causes pressure and
ionization fronts to form in the chromosphere that
propagate with time. This is in contrast to an electron
beam, where the depth of the maximum pressure remains
localized. To observe this difference would likely require
high cadence observations due to the large Alfvén speed.
Since there are differences in the chromospheric
condensations, there would likely also be differences in
spectral line profiles (e.g., red–blue asymmetry) that
could be measured. Further investigation of this is
warranted.

(4) Alfvén wave heating has unique observational signatures.
These signatures should be used to start determining the
relative contribution of waves and electron beams to flare
heating, nanoflare heating, or more generally, the
partitioning of the energy released by reconnection.

We will continue to develop this method in future work.
Reflection, mode conversion, the ponderomotive force, and
other effects require proper treatment in an accurate model, and
these would benefit from an in-depth MHD study. Furthermore,

we have predicted that the signatures of wave dissipation in the
chromosphere could be detected with high cadence spectrosc-
opy, so both observational and modeling studies of chromo-
spheric lines should be undertaken. A study including a full
wave spectrum (e.g., Tarr 2017) might also provide insight
about the heating processes occurring in the chromosphere.
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Appendix

In order to demonstrate the current limitation of this method
while neglecting reflection, we briefly examine one more
comparison between HYDRAD and Lare. We examine a
simulation with one pulse with frequency f=1 Hz, where the
reflection coefficient at the transition region is expected to be

Figure 11. Electron density profiles for the same simulations in Figure 10, shown similarly. As the waves propagate downward, they ionize the plasma, increasing the
electron density at greater and greater depths, whereas a beam reaches essentially the same depth at all times.
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around 45%–50% (Figure 3). We set the initial Poynting flux to
=S 100

9 erg s−1 cm−2 and the perpendicular wave number
=k 0x as before. The initial conditions are the same as in

Section 3.
The damping and heating profiles are shown in Figure 12,

which can be compared to the weak reflection case shown in
Figure 4. As before, blue shows time 3 s and red 4 s into the
simulation, near the top of the chromosphere shortly after the
pulse reaches the transition region. Between the two times,
some of the pulse reflects in the Lare simulation, which reduces
the Poynting flux at the leading edge, causing some to begin to
propagate in the opposite direction. This is why the width of
the pulse is larger and why the Poynting flux appears to have
damped more than in HYDRAD. The derived heating rates are
therefore slightly higher and occur over a smaller height range
in HYDRAD than those in Lare.

The primary differences between the two simulations
therefore appear to be due to the neglect of reflection, which
would be an important generalization. While an empirical fit
can give an estimate of the transmission coefficient at the
transition region, a more general treatment needs to allow for
reflection at any strong gradient in the Alfvén speed (for
example, at shocks). It is not currently clear how to
parameterize the reflection coefficient for any given gradient,
so further work is required.
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