143 research outputs found
Synergetic Analysis of the Haeussler-von der Malsburg Equations for Manifolds of Arbitrary Geometry
We generalize a model of Haeussler and von der Malsburg which describes the
self-organized generation of retinotopic projections between two
one-dimensional discrete cell arrays on the basis of cooperative and
competitive interactions of the individual synaptic contacts. Our generalized
model is independent of the special geometry of the cell arrays and describes
the temporal evolution of the connection weights between cells on different
manifolds. By linearizing the equations of evolution around the stationary
uniform state we determine the critical global growth rate for synapses onto
the tectum where an instability arises. Within a nonlinear analysis we use then
the methods of synergetics to adiabatically eliminate the stable modes near the
instability. The resulting order parameter equations describe the emergence of
retinotopic projections from initially undifferentiated mappings independent of
dimension and geometry.Comment: Dedicated to Hermann Haken on the occasion of his 80th birthda
Natural scene statistics and the structure of orientation maps in the visual cortex
Visual activity after eye-opening influences feature map structure in primary visual cortex (V1). For instance, rearing cats in an environment of stripes of one orientation yields an over-representation of that orientation in V1. However, whether such changes also affect the higher-order statistics of orientation maps is unknown. A statistical bias of orientation maps in normally raised animals is that the probability of the angular difference in orientation preference between each pair of points in the cortex depends on the angle of the line joining those points relative to a fixed but arbitrary set of axes. Natural images show an analogous statistical bias; however, whether this drives the development of comparable structure in V1 is unknown. We examined these statistics for normal, stripe-reared and dark-reared cats, and found that the biases present were not consistently related to those present in the input, or to genetic relationships. We compared these results with two computational models of orientation map development, an analytical model and a Hebbian model. The analytical model failed to reproduce the experimentally observed statistics. In the Hebbian model, while orientation difference statistics could be strongly driven by the input, statistics similar to those seen in experimental maps arose only when symmetry breaking was allowed to occur spontaneously. These results suggest that these statistical biases of orientation maps arise primarily spontaneously, rather than being governed by either input statistics or genetic mechanisms
Autocatalytic Loop, Amplification and Diffusion: A Mathematical and Computational Model of Cell Polarization in Neural Chemotaxis
The chemotactic response of cells to graded fields of chemical cues is a complex process that requires the coordination of several intracellular activities. Fundamental steps to obtain a front vs. back differentiation in the cell are the localized distribution of internal molecules and the amplification of the external signal. The goal of this work is to develop a mathematical and computational model for the quantitative study of such phenomena in the context of axon chemotactic pathfinding in neural development. In order to perform turning decisions, axons develop front-back polarization in their distal structure, the growth cone. Starting from the recent experimental findings of the biased redistribution of receptors on the growth cone membrane, driven by the interaction with the cytoskeleton, we propose a model to investigate the significance of this process. Our main contribution is to quantitatively demonstrate that the autocatalytic loop involving receptors, cytoplasmic species and cytoskeleton is adequate to give rise to the chemotactic behavior of neural cells. We assess the fact that spatial bias in receptors is a precursory key event for chemotactic response, establishing the necessity of a tight link between upstream gradient sensing and downstream cytoskeleton dynamics. We analyze further crosslinked effects and, among others, the contribution to polarization of internal enzymatic reactions, which entail the production of molecules with a one-to-more factor. The model shows that the enzymatic efficiency of such reactions must overcome a threshold in order to give rise to a sufficient amplification, another fundamental precursory step for obtaining polarization. Eventually, we address the characteristic behavior of the attraction/repulsion of axons subjected to the same cue, providing a quantitative indicator of the parameters which more critically determine this nontrivial chemotactic response
Coronary artery bypass grafting and sensorineural hearing loss, a cohort study
BACKGROUND: Sudden sensorineural hearing loss is routinely encountered by the otologist. The etiology is varied and often identifiable. One of the relatively less frequent causes is surgery. Apart from being an established entity with otological surgeries, sensorineural hearing loss has also been known to occur after non-otological procedures under general anesthesia. Commonest amongst these procedures is cardiopulmonary bypass, an association that has long been recognized. However, despite the proposition of diverse hypotheses in the past, the pathophysiology remains unclear. METHODS: The study is a prospective matched cohort study that will be carried out in Aga Khan University Hospital, Karachi, Pakistan. Participants among exposed would include all those patients who would be undergoing coronary artery bypass surgery in the hospital who fall under the criteria for inclusion. Unexposed group would comprise of patients undergoing a non-bypass procedure of similar duration under the same type of anesthesia who meet the selection criteria. Both these groups will undergo audiometric testing at our hospital on three different occasions during the course of this study. Initially before the procedure to test the baseline hearing capacity; then one week after the procedure to assess any changes in hearing ability following the surgery; and finally a third audiogram at six weeks follow-up to assess further changes in any hearing deficits noted during the second phase of testing. Certain variables including the subjects' demographics and those concerning the procedure itself will be noted and used later for risk factors analysis. A detailed past medical and surgical history will also be obtained. Data analysis would include calculation of relative risk and significance of the results, by running the chi-square test. Other statistical tests like Fisher exact test may then be employed to facilitate data interpretation. Continuous scale may then be employed and multivariate linear regression used. DISCUSSION: This study is planned to obtain a better understanding of the correlation between sudden sensorineural hearing loss and cardiopulmonary bypass. Being the first major cohort trial in this line of investigation, the project is designed to identify the existence of any significant relationship between cardiopulmonary bypass and sensorineural hearing deficit
A developmental approach to predicting neuronal connectivity from small biological datasets: a gradient-based neuron growth model.
PMCID: PMC3931784 Open Access article: BB/G006652/1 and BB/G006369/1.Relating structure and function of neuronal circuits is a challenging problem. It requires demonstrating how dynamical patterns of spiking activity lead to functions like cognitive behaviour and identifying the neurons and connections that lead to appropriate activity of a circuit. We apply a "developmental approach" to define the connectome of a simple nervous system, where connections between neurons are not prescribed but appear as a result of neuron growth. A gradient based mathematical model of two-dimensional axon growth from rows of undifferentiated neurons is derived for the different types of neurons in the brainstem and spinal cord of young tadpoles of the frog Xenopus. Model parameters define a two-dimensional CNS growth environment with three gradient cues and the specific responsiveness of the axons of each neuron type to these cues. The model is described by a nonlinear system of three difference equations; it includes a random variable, and takes specific neuron characteristics into account. Anatomical measurements are first used to position cell bodies in rows and define axon origins. Then a generalization procedure allows information on the axons of individual neurons from small anatomical datasets to be used to generate larger artificial datasets. To specify parameters in the axon growth model we use a stochastic optimization procedure, derive a cost function and find the optimal parameters for each type of neuron. Our biologically realistic model of axon growth starts from axon outgrowth from the cell body and generates multiple axons for each different neuron type with statistical properties matching those of real axons. We illustrate how the axon growth model works for neurons with axons which grow to the same and the opposite side of the CNS. We then show how, by adding a simple specification for dendrite morphology, our model "developmental approach" allows us to generate biologically-realistic connectomes
Coverage, Continuity and Visual Cortical Architecture
The primary visual cortex of many mammals contains a continuous
representation of visual space, with a roughly repetitive aperiodic map of
orientation preferences superimposed. It was recently found that orientation
preference maps (OPMs) obey statistical laws which are apparently invariant
among species widely separated in eutherian evolution. Here, we examine whether
one of the most prominent models for the optimization of cortical maps, the
elastic net (EN) model, can reproduce this common design. The EN model
generates representations which optimally trade of stimulus space coverage and
map continuity. While this model has been used in numerous studies, no
analytical results about the precise layout of the predicted OPMs have been
obtained so far. We present a mathematical approach to analytically calculate
the cortical representations predicted by the EN model for the joint mapping of
stimulus position and orientation. We find that in all previously studied
regimes, predicted OPM layouts are perfectly periodic. An unbiased search
through the EN parameter space identifies a novel regime of aperiodic OPMs with
pinwheel densities lower than found in experiments. In an extreme limit,
aperiodic OPMs quantitatively resembling experimental observations emerge.
Stabilization of these layouts results from strong nonlocal interactions rather
than from a coverage-continuity-compromise. Our results demonstrate that
optimization models for stimulus representations dominated by nonlocal
suppressive interactions are in principle capable of correctly predicting the
common OPM design. They question that visual cortical feature representations
can be explained by a coverage-continuity-compromise.Comment: 100 pages, including an Appendix, 21 + 7 figure
Labyrinthine window rupture as a cause of acute sensorineural hearing loss
Labyrinthine window rupture (LWR) is one cause of acute sensorineural hearing loss and need for early exploration is clear for good improved hearing. Acute sensorineural hearing loss of 60 dB or more treated from May 2006 to May 2010 were retrospectively analyzed. There were 21 ears of severe deafness, 18 ears of profound deafness, and 10 ears of total deafness. All patients were examined with temporal bone CT. Space-occupying lesions around the labyrinthine windows were suggestive images of LWR. Thirty-five ears were operated for LWR while 14 ears of SHL received conservative treatments. Fifty-seven percent of LWR improved 30 dB or more after sealing of both labyrinthine windows. Of the 15 markedly recovered ears, 14 ears were operated within 2 weeks from the onset. Of the five cured ears, four ears were operated within a week from the onset. As for the hearing prognosis of SHL, 88% of severe and profound deafness improved 30 dB or more but total deafness did not improve more than 30 dB. Exclusion of LWR from SHL and early surgical intervention in LWR will bring about good hearing prognosis to both LWR and SHL
Coordinated optimization of visual cortical maps (I) Symmetry-based analysis
In the primary visual cortex of primates and carnivores, functional
architecture can be characterized by maps of various stimulus features such as
orientation preference (OP), ocular dominance (OD), and spatial frequency. It
is a long-standing question in theoretical neuroscience whether the observed
maps should be interpreted as optima of a specific energy functional that
summarizes the design principles of cortical functional architecture. A
rigorous evaluation of this optimization hypothesis is particularly demanded by
recent evidence that the functional architecture of OP columns precisely
follows species invariant quantitative laws. Because it would be desirable to
infer the form of such an optimization principle from the biological data, the
optimization approach to explain cortical functional architecture raises the
following questions: i) What are the genuine ground states of candidate energy
functionals and how can they be calculated with precision and rigor? ii) How do
differences in candidate optimization principles impact on the predicted map
structure and conversely what can be learned about an hypothetical underlying
optimization principle from observations on map structure? iii) Is there a way
to analyze the coordinated organization of cortical maps predicted by
optimization principles in general? To answer these questions we developed a
general dynamical systems approach to the combined optimization of visual
cortical maps of OP and another scalar feature such as OD or spatial frequency
preference.Comment: 90 pages, 16 figure
A Multi-Component Model of the Developing Retinocollicular Pathway Incorporating Axonal and Synaptic Growth
During development, neurons extend axons to different brain areas and produce stereotypical patterns of connections. The mechanisms underlying this process have been intensively studied in the visual system, where retinal neurons form retinotopic maps in the thalamus and superior colliculus. The mechanisms active in map formation include molecular guidance cues, trophic factor release, spontaneous neural activity, spike-timing dependent plasticity (STDP), synapse creation and retraction, and axon growth, branching and retraction. To investigate how these mechanisms interact, a multi-component model of the developing retinocollicular pathway was produced based on phenomenological approximations of each of these mechanisms. Core assumptions of the model were that the probabilities of axonal branching and synaptic growth are highest where the combined influences of chemoaffinity and trophic factor cues are highest, and that activity-dependent release of trophic factors acts to stabilize synapses. Based on these behaviors, model axons produced morphologically realistic growth patterns and projected to retinotopically correct locations in the colliculus. Findings of the model include that STDP, gradient detection by axonal growth cones and lateral connectivity among collicular neurons were not necessary for refinement, and that the instructive cues for axonal growth appear to be mediated first by molecular guidance and then by neural activity. Although complex, the model appears to be insensitive to variations in how the component developmental mechanisms are implemented. Activity, molecular guidance and the growth and retraction of axons and synapses are common features of neural development, and the findings of this study may have relevance beyond organization in the retinocollicular pathway
Adenosine induces growth-cone turning of sensory neurons
The formation of appropriate connections between neurons and their specific targets is an essential step during development and repair of the nervous system. Growth cones are located at the leading edges of the growing neurites and respond to environmental cues in order to be guided to their final targets. Directional information can be coded by concentration gradients of substrate-bound or diffusible-guidance molecules. Here we show that concentration gradients of adenosine stimulate growth cones of sensory neurons (dorsal root ganglia) from chicken embryos to turn towards the adenosine source. This response is mediated by adenosine receptors. The subsequent signal transduction process involves cAMP. It may be speculated that the in vivo function of this response is concerned with the formation or the repair and regeneration of the peripheral nervous system
- …