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Abstract

Relating structure and function of neuronal circuits is a challenging problem. It requires demonstrating how dynamical
patterns of spiking activity lead to functions like cognitive behaviour and identifying the neurons and connections that lead
to appropriate activity of a circuit. We apply a ‘‘developmental approach’’ to define the connectome of a simple nervous
system, where connections between neurons are not prescribed but appear as a result of neuron growth. A gradient based
mathematical model of two-dimensional axon growth from rows of undifferentiated neurons is derived for the different
types of neurons in the brainstem and spinal cord of young tadpoles of the frog Xenopus. Model parameters define a two-
dimensional CNS growth environment with three gradient cues and the specific responsiveness of the axons of each neuron
type to these cues. The model is described by a nonlinear system of three difference equations; it includes a random
variable, and takes specific neuron characteristics into account. Anatomical measurements are first used to position cell
bodies in rows and define axon origins. Then a generalization procedure allows information on the axons of individual
neurons from small anatomical datasets to be used to generate larger artificial datasets. To specify parameters in the axon
growth model we use a stochastic optimization procedure, derive a cost function and find the optimal parameters for each
type of neuron. Our biologically realistic model of axon growth starts from axon outgrowth from the cell body and
generates multiple axons for each different neuron type with statistical properties matching those of real axons. We
illustrate how the axon growth model works for neurons with axons which grow to the same and the opposite side of the
CNS. We then show how, by adding a simple specification for dendrite morphology, our model ‘‘developmental approach’’
allows us to generate biologically-realistic connectomes.
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Introduction

The relationship between structure and function of
neuronal circuits is a challenging problem in neurosci-
ence and has two related aspects: 1) How can we identify the

neuronal connections which lead to appropriate activity of a

circuit? 2) How does that activity, as a dynamical pattern of spiking

activity, lead to functions like cognitive behaviour? Experimental

neuroscience provides knowledge on mechanisms of spike

generation and propagation along the axon, synaptic transmission

to other neurons and many other details of neuronal network

function. However, in many cases important information about

large scale synaptic connectivity (contacts between neurons) is

missing. One reason is that the experimental investigation of

connections between large numbers of neurons is extremely

difficult so there is only limited information on these connections,

and their detailed mapping between all individual neurons in all

but the smallest networks is absent. A way to address this problem

and predict large scale network connectivity on the basis of

relatively small amounts of information is through development.

Axons typically grow out from the cell body to make synaptic

connections with the dendrites of other neurons. If we can define

the rules controlling axon growth and their formation of synaptic

connections with dendrites by generalizing from a small database

of known connections, then we can build a developmental model

to generate the axons and connections in a whole network [1].

Rather than trying to estimate connections in a fully formed

neuronal network, this paper therefore describes a ‘‘developmen-

tal’’ approach to studying anatomical connectivity. At the core of

this developmental approach is a new biologically realistic model

of axon growth.

Modelling axon growth is a very active field of
research. The major challenge in this area is to understand,

both empirically and theoretically, the mechanisms underlying

axon growth, given ever expanding knowledge about the guidance

cues and their interactions with the growth cone, the motile and

very sensitive structure at the growing axon tip [2]. It is typically

assumed in modelling axon growth that axons are guided to their

target neurons in the developing nervous system with remarkable
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precision by sensing molecular cues in the extracellular (growth)

environment [3], [4], [5], [6]. The target cells secrete molecular

cues and thus create a gradient of increasing concentration which

growth cones can sense and follow towards their target [7], [8],

[9], [10]. Mathematical models of the growth of axons towards

their targets usually rely on sensing of diffusive gradients by

filopodia, which are dynamic hair-like protrusions from the growth

cones [11]. The molecular cues can be either attractive or

repulsive to the growth cone [12], [13]. Mathematical models of

axon growth were developed in [14], [15], where axons grow in a

two-dimensional plane governed by differential equations for the

locations of the growth cones, coupled to diffusion equations that

describe the gradient field set by the diffusive attractive and

repulsive guidance cues. Such models can generate realistic axons

which grow towards their target cells.

The vertebrate spinal cord offers an example where
axons grow to form functional networks as a result of
interactions with molecular and physical cues in their
environment [16], [17], [18], [19]. Evidence suggests that

molecular cues, secreted from the dorsal roof plate and ventral

floor plate of the cord, are initially responsible for establishing a

dorso-ventral series of longitudinal columns of distinct neuron

types on each side of spinal cord [20], [21]. Later in development

the same morphogen cues may then act as axon guidance cues

[22]. Some neuron types have axons growing on only one side of

the cord, while others have commissural axons, attracted to the

ventral floor plate and then crossing ventrally to the opposite side

[23]. After crossing, these commissural axons are transformed and

no longer attracted to the ventral floor plate [24], [25], [26].

Instead, they turn to grow longitudinally [27] like their ipsilateral

(uncrossed) counterparts, either towards the head or the tail or

branching to grow in both directions. In this study, we present a

biologically-tractable mathematical model for axon growth and

the formation of synaptic connections. The model incorporates the

complex responses of the growth cone to gradient fields from its

initial emergence from the cell body through different stages of

axon growth to produce detailed, biologically-realistic patterns

uncrossed and crossing projection.

Our growth model is of the neurons in the spinal cord
and brainstem of newly hatched frog tadpoles opened
like a book to make it two-dimensional. Research here has

provided detailed anatomical and functional information on the

networks controlling swimming [28]. Electrophysiological record-

ings from pairs of neurons have revealed synaptic connections

[29], [30], [31], [32]. The results led to a proposal that the

location or geography of axons and dendrites plays a fundamental

role in establishing connectivity [1]. For example, if ‘‘geograph-

ically’’ the dendrites of some neurons are located mainly dorsally

while the axons of other neurons are located mostly ventrally, then

it is unlikely that they will form synapses. It is important to note

that in this case, as is widespread for CNS networks, axons grow

and make connections along their length rather than seeking

specific, distant targets and their overall growth trajectory is

therefore critical. Our previous simple mathematical model of

axon growth allowed us to generate large networks whose

connectivity could be analysed [1], [33], [34] but it was limited

in important ways. It only considered axon growth after it had

reached a longitudinal orientation and axon guidance was based

on fixed values of artificial parameters, in particular a simple

‘‘attractor’’. It did not model the usually-ventral initial outgrowth

of the primary axon from the soma, the orientation to longitudinal

growth, branching to form a secondary axon, or the formation of

commissural projections. By addressing these limitations, our new

model allows more useful biological interpretation.

Our present aim was to build a gradient-based model
for growth of whole neuron morphologies based on
biologically-plausible responses to axon guidance cues
provided by rostro-caudal (longitudinal), dorsal and
ventral morphogen gradients. When dendrites were allocat-

ed to neurons, this developmental approach [1], [35] could be

used to assemble complete networks of neurons in the tadpole

spinal cord based on limited biological datasets. Fundamental to

this approach is generalization from measured data where the

number of recorded cases is rather limited. We did this for key

model features by generating large sets of values whose probabi-

listic structures matched those of the limited anatomical datasets.

In this way we can model the complete development of the specific

morphology and resulting synaptic connections of the seven types

of neurons in the tadpole swim network. The process starts with

the assignment of soma position, grows an entire primary axon,

followed by branching to grow a secondary axon. It then allocates

dendrites and allows probabilistic synapse formation between

axons and dendrites which come into contact, with a probability

based on measurement [1]. The details of this modelling process

are specific for each neuron type. In the Discussion we consider

the wider utility of our approach.

Materials and Methods

Mathematical Formulation of Axon Growth Model
Derivation of difference equations of axon growth. The

derivation of axon growth difference equations (dynamics in

discrete time) follows the work of Krottje and van Ooyen [15].

This approach considers how the tip of a growing axon is guided

by gradients representing spatial differences in the concentrations

of diffusive or molecular cues. Some terms therefore describe

features of the environment in which the axon is growing (these

are mainly considered in the Results), while others describe the

response of the growing axon to those features. Here we derive a

system of three nonlinear difference equations that describe a

process of axon growth under the assumption that the two-

dimensional growth environment, including the concentrations of

molecular cues, remains steady.

We start with a general formulation of the mathematical model,

which is used to grow each fragment of an axon and where the

parameters of the model are biologically tractable. This model is

convenient, flexible and biologically plausible; therefore we hope

the model will have wider utility. Any particular application of the

model requires adjustment of model parameters according to the

specific details of a particular biological system. Here, it has been

used to generate different parts of the axon projections of different

types of tadpole spinal neuron. We begin from mathematical

formulation and in the Results section show specific examples of

neuron growth.

The axon grows in discrete steps and this growth process is

studied in a two-dimensional representation of the spinal cord with

co-ordinates (x,y), where x is the rostro-caudal (longitudinal)

position along the body and y is the dorso-ventral position on one

side of the body. These co-ordinates are measured in micrometres.

The growth dynamics are also characterised by a growth angle h.

The dynamics of this angle are characterised by ‘‘stiffness’’, the

tendency of the growing axon to grow straight, keeping the same

growth angle as was used on the previous growth step, and an

‘‘ability to deviate’’, which is the tendency of the axon to deviate

from a straight path according to the influence of environmental

cues (Fig. 1). The addition of a random variable at each step of

growth provides an additional degree of freedom for axon growth.

In fact, interplay between environmental cues and this random
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perturbation defines a key feature of the axon growth model. Also,

the random variable makes it possible to generate computationally

a set of axons with similar statistical properties to real axons [36].

Figure 1 illustrates the model derivation. The ‘‘stiffness’’ is

shown in Figure 1A by the dashed line; however, environmental

influences change the angle value, and growth from the point with

co-ordinates (x1,y1) to the point with co-ordinates (x2,y2) is

characterised by angle h1 which can be different from the previous

angle h0 (hence ‘‘ability to deviate’’). Figure 1B illustrates the

influences of two gradients resulting in a change of the angle value:

a rostro-caudal gradient GRC and a dorso-ventral gradient GDV .

Influences of these gradients on the growth angle are characterised

by deviations in a direction perpendicular to the direction of axon

growth. Each gradient is therefore projected to a direction

perpendicular to the current growth to describe the change of

the growth angle. Thus, the model is described by the following

difference equations:

xnz1~xnzD cos hn

ynz1~ynzD sin hn

hnz1~hn{GRC(xn,yn) sin hnzGDV (xn,yn) cos hnzjn

ð1Þ

where (xn,yn,hn) are the current co-ordinates of the axon tip and

the growth angle at step n (n~0,1,2,:::N); D is the axon elongation

at each step (usually 1 mm); GRC(x,y) and GDV (x,y) are rostro-

caudal and dorso-ventral gradients, whose influence will depend

on the current position of the growth cone; jn is the value of a

random variable acting on the current step of the growth process

(here, a uniform random variable in the interval ½{a,a�). This

system of three nonlinear difference equations (1) provides a

general mathematical formulation of the model which, although

intended for application to tadpole spinal neurons, can be

considered as a computational kernel that can easily be adapted

to take into account other specific biological features.

The effects of the rostro-caudal and dorso-ventral gradients are

actually an interaction between two components: the environ-

mental cue itself and the sensitivity of the axon tip to that cue. The

resulting influence depends on the position of the axon tip:

GRC(x,y)~gR HR(x){gC HC(x),

GDV (x,y)~gD HD(y){gV HV (y),

where HR,HC ,HV ,HD describe the gradient cues while functions

gR(x,y),gC(x,y),gD(x,y),gV (x,y) describe the sensitivities of the

axon tip to each element of the gradient field.

Each environmental gradient cue is described here by a

decaying exponential function:

HR(x)~ exp ({bR (x{xR)), HC(x)~ exp (bC(x{ xC))

HD(y)~ exp (bD(y{yD)), HV (y)~ exp ({bV (y{yV ))
ð2Þ

where parameters xR,xC ,yD,yV specify the rostral, caudal, dorsal

and ventral edges for the four gradient cues (where the each is at

its maximum value) and parameters bR,bC ,bD,bV specify their

decay rates. Thus, exponential functions with these parameters

describe the properties of a common environment in which all the

axons grow, and which is identical for the growing axons of all

different neuron types. The values of these parameters are

therefore chosen to be the same when generating axons of all

neurons, independently of their type.

In contrast, the sensitivities of the axon tips to the gradient cues

gR(x,y), gC(x,y),gD(x,y),gV (x,y) and the random variable j,

which describes a stochastic component of axon growth, are

specific for different neuron types.

The model of axon growth (1) can now be re-written in the

following form:

xnz1~xnzD cos hn

ynz1~ynzD sin hn

hnz1~hn{½gRHR(xn){gCHC(xn)� sin hn{

½gDHD(yn){gV HV (yn)� cos hnzjn

ð3Þ

Adjusting the equations of axon growth for the specific

case of the tadpole spinal cord. Having described the

derivation of the difference equation for basic axon growth, we

next describe how the equations (2–3) are modified and extended

Figure 1. Features of the axon growth process (A) Three consecutive points of a growing axon are shown. Direction of growth during
each step (D) is defined by the growth angle (h). The dashed line shows the trajectory if based only on axon ‘‘stiffness’’ (keeping the same direction)
where there is no influence causing it to deviate. (B) Rostro-caudal (GRC) and dorso-ventral (GDV) gradients and their projections to the direction of
growth between two consecutive points of a growing axon.
doi:10.1371/journal.pone.0089461.g001
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to apply them to the specific biological example of the tadpole

spinal cord.

The first modification is to assume that either the rostro-caudal

gradient GRC(x,y) or the dorso-ventral gradient GDV (x,y) can be

represented by a single component. For the tadpole, we have

simplified the first of these by assuming that axon growth in a

longitudinal direction is only influenced by a rostral gradient.

Axon growth ascending (towards the head) or descending, (away

from the head) can then be controlled by either an attractive or

repulsive sensitivity of the axon tip to this gradient. A second

modification is to give the rostral gradient cue a slope of zero so

that HR is a constant and the cue acts as a polarity; i.e. it signals

rostral direction but not position. Biologically, this could represent

an electrical field rather than a chemical cue [37] or the behaviour

of an axon tip that used sensitivity to concentration difference (e.g.

between sides of the growth cone) rather than absolute concen-

tration [38] to detect direction or polarity. This rostro-caudal

polarity cue is uniform and therefore no longer depends on the

rostro-caudal position of the axon tip. The model of axon growth

is then described by the following equations:

xnz1~xnzD cos hn

ynz1~ynzD sin hn

hnz1~hn+gR(xn, yn) sin hn{

½gD(xn,yn) exp (bD(yn{yD) {

gV (xn,yn) exp ({bV (yn{yV )� cos hnzjn

ð4Þ

here, the sign ‘‘+’’ corresponds to growth in the ascending

direction and the sign ‘‘-’’ corresponds to descending growth.

Values of the environmental parameters used here for modelling

the tadpole are: bR~0,bD~ ln (10)=30,yD~145,bV ~ ln (10)=30,
yV ~5:These values are motivated by biological plausibility and the

form of the growth field representing the tadpole hindbrain and

spinal cord. In fact, there is little experimental evidence on the decay

rate of gradients [39]. Suggestions range from shallow gradients [40]

to relatively steep gradients [41]. The values we have chosen for the

tadpole are based on multiple simulations using a variety of decay

rates. We have found that precise values are not critical; a range of

relatively fast decaying gradients will work well for the model

provided that sensitivities to gradients and the random factor are

adjusted appropriately for the chosen environment.

For modelling the primary axons of tadpole neurons, we

consider three consecutive stages of axon growth. The first is the

outgrowth stage. This is controlled by a fixed set of parameter

values. For uncrossed axons, this stage is very short, but for

crossing axons growth continues ventrally until axons have

travelled through the floor plate and emerged on the opposite

side. The second stage is an orientation stage in which typically-

ventral growth turns to become longitudinal, either ascending or

descending depending on neuron type. Parameter values are not

fixed during this stage but change smoothly between two different

sets depending of the axon length (see below). The third stage is

the main stage of longitudinal growth. Like the outgrowth stage,

this is controlled by a fixed set of parameter values. Secondary

axons, which branch from the primary axon and run in the

opposite longitudinal direction, have only a single main stage of

growth that is controlled by a fixed set of parameter values. (These

stages, as well as branching, are considered further in the Results.).

During the orientation stage of growth, the sensitivities of a

growing axon tip change along the axon growth path and

therefore depend on the co-ordinates of the axon tip. The

functions gR(x,y),gD(x,y),gV (x,y) (which are constant during the

outgrowth and main stages of growth) now describe how axon

tip sensitivities change according the axon length:

gR(x,y)~½(~ggR{�ggR) exp ({cR L(x,y)) z�ggR� ,

gD(x,y)~½(~ggD{�ggD) exp ({cD L(x,y)) z�ggD� ,

gV (x,y)~½(~ggV {�ggV ) exp ({cV L(x,y)) z�ggD� ,

ð5Þ

here: L(x,y) is the length of the growing axon from the start of the

orientation stage to the current point; parameters ~ggR,~ggD,~ggV are

the sensitivity parameters of rostral, dorsal and ventral gradient

cues respectively at the start of the orientation stage; �ggR,�ggD,�ggV are

sensitivity parameters for rostral, dorsal and ventral gradients

respectively for the subsequent, main stage of axon growth, and

therefore the end of the orientation stage; cR,cD, cV are decay

rates for rostral, dorsal and ventral sensitivity functions respectively

and describe the smooth transition between sensitivity parameter

values during the orientation stage.

These equations (5) reflect the biological situation where axon

behavior changes significantly during a stage of axon growth and

where a transition between two set of sensitivity parameters is

needed to model this change appropriately. In the tadpole case,

the sensitivity parameters differ in magnitude but, more generally,

they could also be of different signs indicating a change between

attraction and repulsion for the particular environmental cue.

In an analysis of a simplified version of system (4), assuming that

sensitivities to gradients are constant (Supporting Information S3

‘‘Mathematical analysis of difference equations of axon growth’’),

the dynamics can be compared with the behaviour of axons

described by our previous model (see equations (1) in paper [33]).

This previous model is almost linear and its dynamics are

characterised by an asymptotic tendency to some dorso-ventral

attractor. Although the new model is highly non-linear, it is proven

that in this simplified case the growing axon approaches some

dorso-ventral position, where two gradients are balanced. How-

ever, the use of a non-linear equation for growth angle means that

the dynamical behaviour of the new model is more flexible and

complex than the previous almost-linear model [42]. It is worth

emphasising that the sensitivities in model (4) are not constant but

depend on the position of axon tip; in fact, these functions depend

on the current length of a growing axon. Also, these functions can

be changed after crossing the ventral floorplate when the sign of

sensitivities is reversed.

Generalization from Biological Data
To start iterations of the axon growth model (4) we have to

specify the initial values of several variables before running the

simulation: the co-ordinates of the starting point (x0,y0) (at the

soma if growing a primary axon or at a branch point if growing a

secondary axon); the outgrowth angle h0, which specifies the initial

direction of growth; and the axon length. These values are specific

for each neuron type and we use available anatomical measure-

ments to define them using a computational procedure called

Generalization from biological data. The importance of the

generalization procedure is that it allows approximation to a

measured distribution; therefore generated data have random

probability distributions which are close to the probability

distributions of the original, limited, measured biological data.

This procedure helps ensure that the modelling of axon growth is

biologically realistic.

Computational procedures to generalize information

from limited biological data. We describe here two general-
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ization methods that were used to construct random distributions,

based on available biological measurements, from which sensible

values could be selected.

One-dimensional generalization from cumulative

distributions. In this case we generalize from a one dimen-

sional sample (of size k). First, the cumulative distribution function

is constructed from this sample. Second, a piece-wise linear

approximation of the cumulative distribution function is consid-

ered. This approximation is a continuous, monotonic function.

Therefore, to generate the generalised value we use the following

algorithm: generate a uniformly distributed random value w in the

interval [0, 1] and use this value as the vertical co-ordinate of the

piece-wise linear approximation; a projection to the abscissa

(horizontal axis) gives the generated value.

An example of one dimensional generalization is illustrated in

Figure 2A to specify axon length for tadpole ‘cIN’ neurons [28]. In

terms of our model (4), axon length defines the total number of

iterations (axon length is the number of iterations times the

prolongation due to one iteration; here 1 mm). The sample size for

cIN axon length is k = 46 and lengths lie in the range 110 mm to

1,450 mm (see the longitudinal axis in Fig. 2A). The cumulative

distribution function is constructed and the piece-wise linear

approximation is shown by the blue line. Horizontal co-ordinates

of red stars correspond to the sample. To generate the axon length

we randomly select a probability value from interval [0, 1]

(w = 0.84) and project it to the horizontal axis. In Fig. 2A an arrow

points to the generated axon length (L = 1018 mm), shown by the

yellow circle.

Two-dimensional generalization. A different approach can

be used where the biological data are represented by ordered pairs

of measurements. For example, values for the initial angle of axon

outgrowth may be related to the dorso-ventral co-ordinate of the

start of the axon. In this case, a two-dimensional generalization

procedure is needed. A sample of pairs of DV position and initial

outgrowth angle is shown in Fig. 2B by coloured dots for cIN and

aIN neurons (upper and lower plots respectively). Grey dots show

generalised values which are obtained using the two dimensional

normal distributions around sample dots. For details of the

algorithm, see Supporting Information S1 ‘‘Two-dimensional

generalization procedure’’. This method is also used for assigning

dendrites (see below).

Stochastic Optimization of Axon Growth Parameters
Stochastic optimization of model parameters for axon

growth. The previous section described how to define initial

values for variables of system (4) and values for some of the growth

model parameters, which are specific for the axon growth of each

neuron type. Parameter values for the ‘outgrowth’ and ‘orienta-

tion’ stages of primary axon growth (described above) were chosen

visually in such a way as to suitably describe a specific shape of

axon during these initial stages of growth. For the orientation

stage, this involved specifying the sensitivity parameters

(~ggR,~ggD,~ggV ), which describe how the growing axon tip responds

to the gradient cues in the growth environment at the start of this

stage, and the exponential decay rates(cR,cD,cV ), which describe

the transition to their ‘main’ axon growth stage values (Eq. 5).

A different approach was used to define the parameters needed

to model the ‘main’ stages of primary and secondary axon growth.

The main stage of axon growth is characterised by its own

sensitivity parameters (�ggR,�ggD,�ggV ). To define values for these three

parameters as well as the fourth parameter a, which provides an

interval of variation of the uniform random variable

j : j[½{a,za� (see equation (4)), an optimization procedure is

needed. The optimization procedure used should provide the best

values for the four axon growth parameters (�ggR,�ggD,�ggV ,a),
corresponding to the smallest value of a designated cost function

(see below). This cost function is designed in such a way to match

the model-generated axons to the real, measured axon samples for

a particular type of neuron.

Optimization of the four axon growth parameters for a selected

neuron type starts with generation of a set of modelled axons to be

compared with measurements of real axons from the same neuron

Figure 2. Generalization of values from limited biological datasets. (A) Piece-wise linear approximation of the cumulative distribution
function for cIN axon length. Red stars are points on the cumulative distribution function whose horizontal co-ordinates relate to biological
measurements (n = 46). The blue line shows the piece-wise-linear approximation of the cumulative distribution. The yellow dot shows the generated
axon length corresponding to random value w. (B) Two-dimensional generalization of dorso-ventral axon start point and axon initial outgrowth angle
for two examples of tadpole spinal neurons (cIN upper, aIN lower). Coloured symbols are measured values; grey symbols are generated values.
(Algorithm parameter values: sd ~5,sv~8 and r~0:5; see SI for details.).
doi:10.1371/journal.pone.0089461.g002
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type. Here, measured, real axons and modelled axons were located

on a two-dimensional rectangular plan inspired by the biological

reality (explained in the Results section). Parameter values for start

position, initial growth angle and axon length were specified using

the generalization procedures described above. Some starting

values were required for the four growth parameters. Initial

starting guesses for these values were then changed at each

iteration step of the optimization procedure. Where the iterations

converge, the result of the final iteration provides the best

parameter values corresponding to the smallest value of the cost

function (i.e. the cost function value closest to zero since the cost

function could be positive or zero).

Design of the cost function. The cost function used to

measure similarity between the generated and real axons of

tadpole spinal neurons comprised components based on two

simple features that describe the main trajectories of the axons

well: the dorso-ventral distribution of points along their length and

their tortuosity (wiggliness). The dorso-ventral distribution was

found simply by projecting points along the length of the axon to

the vertical axis and counting them in 10 mm bins (Fig. 3A,B). For

model axons (Fig. 3B), all points were generated at 1 mm step

intervals. Measurements of real axons (Fig. 3A) were made

intermittently along their length, typically at mean intervals of

,10 mm. To make these measurements comparable to those from

model axons, a simple linear interpolation procedure was first used

to link the measured co-ordinates with others at 1 mm intervals.

Similarity was estimated using normalised least squares, following

the traditional, statistical chi-square approach (see Supporting

Information S2 ‘‘Defining the cost function for stochastic

optimization’’ for further details). The tortuosity (T) of each axon

is the ratio of the total path length (arc) to the straight line distance

between start and end points (chord) (Fig. 3C; see Supporting

Information S2 ‘‘Defining the cost function for stochastic

optimization’’ for details of calculation). To make tortuosity values

for real and model axons comparable, model axon co-ordinates

were first re-sampled at 10 mm intervals along their length, similar

to the spacing between measurements of real axons. A squared

difference between average tortuosity values of real and generated

axons was then used as a measure.

The two terms of the cost function, the similarity between

dorso-ventral projection distributions and the similarity of axon

tortuosities, have very different scales. To balance them, we

therefore used a weighting coefficient w to make these terms of the

same order. Thus, the final expression for the cost function is:

fc~f 1
c zw (�TTe{�TTm)2, ð6Þ

Figure 3. Cost function components and optimization of growth parameters for tadpole aIN neurons. (A) Ten axon trajectories.
Histogram (left) showing the dorso-ventral distribution of interpolated points along the length of a set of real axons (right: viewed laterally as in Fig.
4C; red symbols indicated intermittently measured points with all axons starting at the right). The proportion of points accumulated at each dorso-
ventral level (e.g. cyan bar) is shown in the appropriate 10 mm bin. (B) Like A, but for a set of model axons. (C) Tortuosity in single axons. Red lines
indicate the direct (chord) length; red symbols indicate measured points on the path of a real axon (left); paths of model axons (right, blue) were re-
sampled at 10 mm intervals. (D) The random component in the cost function needed for optimization produces an uneven surface (illustrated for two
dimensions: dorsal and ventral sensitivity). White arrows indicate multiple slopes from the start point of a search for a minimum cost function value
(Global minimum). (E) Histogram of a sample containing 1000 repetitive calculations of the cost function for a single set of axon growth parameter
values (All examples in A–E are for tadpole aINs).
doi:10.1371/journal.pone.0089461.g003
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where f 1
c describes the similarity between dorso-ventral axon

distributions (see Supporting Information S2 ‘‘Defining the cost

function for stochastic optimization’’ for details of its calculation)

and �TTe, �TTm are the average tortuosities of real and modelled axons

respectively; the weighting coefficient w~106.

Optimization procedure. Optimization of the axon growth

model parameters �ggR,�ggD,�ggV and a requires minimizing the cost

function. However, the axon growth model (Equations 4) includes

a random variable j so the cost function behaves irregularly like a

random variable, and the surface of this function in four-

dimensional space is not smooth but uneven (Fig. 3D). Also

because the cost function behaves as a random variable, each

successive calculation of the cost function under the same fixed

parameter values will generate a slightly different value of the cost

function. For these reasons, a stochastic optimization technique is

required. Therefore, to minimize the cost function and find a set of

optimal parameter values for �ggR,�ggD,�ggV and a, the ‘pattern search’

algorithm was applied (for mathematical details see [43]). This

very efficient algorithm belongs to a class of direct search methods

where solving an optimization problem does not require any

information about the gradient of the cost-function. The

optimization procedure combines a random search on a mesh of

variable size with finding a descending direction and calculation of

the cost function along this direction. A ‘‘patternsearch’’ routine

from the Global Optimization Toolbox of MATLAB was used.

The strength of this method can be illustrated by considering an

optimal set of axon growth parameter values obtained for the

primary axons of one specific tadpole spinal neuron type (aIN, see

below). For this set of values (�ggR~0:054,�ggV ~0:133, �ggD~0:038,
a~0:09) we repeated the calculation of the cost function one

thousand times, resulting in a sample of different cost function

values, all calculated for the same fixed parameter values. The

statistical characteristics of this sample of cost functions were:

minimum: 3|10{6; maximum: 5:6|10{2; mean: 6:8|10{3;

and standard deviation: 9:5|10{3. It is clear from a histogram of

the sample (Fig. 3E) that about 40% of cost-function values are

located in the first bin with its centre at 9:5|10{4. Thus, simple

statistical analysis shows that optimal parameter values provide

small values of the cost function and means that the quality of

optimization, as in the case of these aIN neuron primary axons, is

good. For detailed evaluation of optimization quality we consider

the optimal parameter values and generate 100 primary axons

which are used to compare their tortuosities and dorso-ventral

distribution ‘‘histograms’’ with those of experimentally measured

axons. First, we apply a two sample t-test to compare the

differences between tortuosities of modeled and real axons. For

each generated axon we calculate the tortuosity and do the same

for each measured axon. The statistical test shows that the

difference between the means of the two sets of tortuosities

(modeled and real axons) are not significant (p-value.0.05).

Second, we compare ‘‘histograms’’ of modeled and measured

axons. Strictly speaking, the standard statistical tests are not

applicable for estimating the similarity between ‘‘histograms’’ of

dorso-ventral axon distributions. The reason is that the data in the

sample are not independent because they are close successive

points on the same axon. Nevertheless, we apply a two-sample chi-

square test to compare histograms for generated and real axons

which confirms the similarity of ‘‘histograms’’ (p-values.0.05).

Generating Connections from Grown Axons
‘‘Growth’’ of a network of interconnected neurons (connectome)

using the axon growth model followed a series of stages:

distribution of neuron somata; assignment of dendrites; growth

of axons; and formation of synapses where axons and dendrites

meet. The following briefly describes each of these stages for

generating a tadpole connectome (further details are given in the

Results section below). The various parameter values needed are

summarised in Table S1 ‘‘Connectome generation parameters’’.

Neuron somata were placed rostro-caudally within the growth

environment (see Fig. 4) based on data of their real numbers and

distributions [1]. Different neuron types were assigned consecu-

tively, with all individuals at minimum longitudinal separations of

1.5 mm. The algorithm used (see Supporting Information S4

‘‘Soma distribution’’ for details) contains a random component, so

the distributions were different each time they were generated, but

their statistical properties were the same. The dorso-ventral

position was assigned using the two-dimensional generalization

procedure, which also generated the initial, outgrowth angle of the

axon (see above). The co-ordinates given by the rostro-caudal and

dorso-ventral position of each soma define the origin of the axon

for that neuron.

Dendrites were then placed at the rostro-caudal position of each

soma. The detailed shape of each dendrite was not modelled here.

Instead, dendrites were represented by a vertical bar between

dorsal and ventral extremes whose values were obtained from real

data using the two-dimensional generalization procedure de-

scribed above. This simple representation is sufficient to allow

realistic synapse formation. In the tadpole spinal cord, all synapses

are thought to be made from axons onto dendrites, rather than

being axo-somatic or axo-axonal.

Next, the growth model was used to generate an axon starting at

each of the neuron somata. For many neurons, based on biological

measurements and as described above, growth of a primary axon

was followed by growth of a secondary axon from a branch point

on the primary axon (see Fig. 5).

Lastly, synaptic connections were allowed to be made where the

axon of one neuron met the dendrite of another neuron. On the

basis of electrophysiological evidence from paired recordings, the

probability that such a meeting would actually produce a synaptic

contact was set at 0.46 for most pairs but 0.63 for sensory pathway

connections [1].

Results

Using Biological Details to Specify the Environment for
Axon Growth in the Spinal Cord of the Young Xenopus
Tadpole

The original motivation behind the computational model

described here was its specific application to neuron growth in a

simple vertebrate system, the spinal cord of the 48-hour post-

fertilization hatchling Xenopus tadpole. Here we introduce biolog-

ical details of the Xenopus tadpole system and describe application

of the general mathematical model of axon growth (see previous

section) to the tadpole spinal cord. The adjusted model takes into

account specific details of axon growth for different spinal cord

neuron types. Because the different populations of spinal cord

neurons, and particularly many of their ascending axons, typically

extend in to the hindbrain, the model considers growth in both

hindbrain and spinal cord.

Young frog tadpole CNS anatomy. The 48-hour old

hatchling Xenopus tadpole is 5 mm long and the eyes are not yet

functioning but the brain and spinal cord contain differentiated

neurons. The spinal cord is a simple tube about 100 mm in

diameter with a central canal formed by glial cells and the ventral

floor plate ([44]; Fig. 4). On each side lies a layer of neurons

loosely organized into longitudinal columns. The neurons project

axons in the longitudinal direction, either directly or after first
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growing ventrally across the floor plate to the other side and then

turning or branching longitudinally. Axons lie in the marginal

zone on the outside of the spinal cord and can grow more than

1,000 mm (20% of the body length), and wander dorsally and

ventrally as they grow.

The tadpole CNS tapers towards the tail. For modelling

purposes, we therefore consider axon growth only in a 2,000 mm

length of the CNS, including the hindbrain and the first 1,150 mm

of the spinal cord, where the degree of tapering is relatively small.

For modelling, this approximately-cylindrical region of the CNS is

transformed into two dimensions by ‘cutting’ it along its dorsal

midline (where no axons cross), opening it out flat and viewing it

from the outer surface. In plan view, the axon growth area then

becomes a pair of rectangles, one for each side of the cord,

separated by a further rectangle representing the floor plate

(Fig. 4C). The justification for this transformation into a two-

dimensional plan-view is that the outer layer of each side of the

spinal cord in which the main axon growth occurs (the ‘marginal

zone’) is approximately 100 mm in dorso-ventral extent and (for

the part considered here) 2,000 mm long, but it is only ,10 mm in

thickness. Therefore, in ignoring the thickness of the growth area

and considering it in just two dimensions, there is very little

compromise anatomically. However, there is a significant simpli-

fication computationally. Generation of axons within the growth

area is then controlled by gradient fields and constrained by a

series of anatomical barriers (Fig. 4C). These elements are

considered in turn.

Spinal gradient fields. It is known that in the developing

vertebrate spinal cord, neurons arise from progenitor cells in the

neural tube [45]. The hypothesis that forms a basis for our model

is that guidance molecules along the spinal cord set up gradient

fields which steer axons into appropriate locations and thus ensure

the formation of proper connections [46]. In the part of the

hatchling Xenopus tadpole CNS that we are considering here, three

possible sources of guidance molecules that could attract or repel

axons are: the dorsal roof plate, the ventral floor plate and the

hindbrain (Fig. 4C) [17], [5], [19]). Because the proposed guidance

molecules are diffusive, the gradients following their changes in

concentration are considered to be exponential in form. The

second important element of axon growth is the sensitivity of the

growing axons to the gradient fields. Since the axons of tadpole

spinal neurons make synaptic connections with the dendrites of

other neurons en passant along their length, the path followed by

the growing axon, rather than a specific destination, is probably a

key to the developing pattern of connectivity between neurons.

In the model, there are three line sources for the guidance cues

which influence axon growth in the rectangular CNS growth area:

one (GR) starting at the midbrain-hindbrain border (the origin on

the longitudinal axis); one (GV ) starting 5 mm from the midline of

the ventral floor plate, which is at 0 along the dorso-ventral axis;

and the last (GD) starting at the dorsal edge, which is at 145 mm

Figure 4. The two-dimensional environment for axon growth. (A) Side view of the head end of the tadpole showing hindbrain and spinal
cord (buff). (B) Diagram of a section of the CNS to show the main parts including the central canal surrounded by a glial cell layer and the ventral floor
plate, surrounded in turn by the layer of neuronal somata. Lying outside the soma layer are the marginal zones, in which most axons grow, and the
dorsal tracts containing sensory neuron axons, separated from the marginal zone by a barrier formed by the dli column, a column of dorsolaterally-
situated sensory pathway somata (red line), and bounded dorsally by the column of RB sensory neuron soma (yellow line). (C) The CNS opened like a
book along dorsal midline (dotted line in B). Graphs on the left show the gradients originating at the dorsal edge (GD, green) and near the midline of
the ventral floor-plate (GV, blue). There is also a longitudinal polarity (GR, not illustrated). Lines on the right (purple) indicate the dorso-ventral
positions of a series of barriers to axon growth (see text for further details).
doi:10.1371/journal.pone.0089461.g004
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from the ventral midline. The assigned values for the slopes of the

gradient cues are bR~0, bV ~ ln (10)=30 and bD~ ln (10)=30
(see above for comments on selection of these values). In the

specific application of the model to the tadpole CNS, the

formulation of a slope value in the form of ln (10)=b is convenient

as the value b for a gradient cue is the distance over which the

gradient strength decreases to 10%. The longitudinal signal is

given a constant value. Biologically, this implies a polarity along

the rostro-caudal axis causing turning of an axon in the

longitudinal direction. The gradient slopes are kept fixed for all

neuron types so that the axonal growth cones of all neurons are

subjected to same environmental cues. On the other hand, growth

cone sensitivities to the gradients differ, so axons of different spinal

neurons respond differently to the same gradient fields.

Barriers to axon growth. In addition to gradient sources,

the model includes five barriers running longitudinally on each

side of the CNS, most representing tightly packed rows of neuron

somata which axons do not cross (purple lines, Fig. 4C). Axons

approaching these barriers are deflected. In the model, the axons

are turned longitudinally upon contact. The way the axons are

restricted at the barriers and deflected along them reflects what is

observed biologically. The most ventral barrier is at the outer

margin of the floor plate, which is the ventral edge of the marginal

zone (25 mm from the ventral midline). There are two barriers at

the dorsal edge of the marginal zone and the ventral edge of the

dorsal tract (125 and 127 mm from the ventral midline). These

barriers are formed by a column of sensory pathway neuron

somata (dli column, Fig. 4C) and extend forward to 700 mm from

the midbrain. A further barrier at the top of the dorsal tract

(137 mm from the ventral midline) is imposed by the column of

Rohon-Beard (RB) sensory neuron cell bodies which extends

forward to 500 mm from the midbrain. A final barrier (145 mm

from the ventral midline) imposes a dorsal limit to growth for the

most rostral part of the growth area.

Simulation Results for Axon Growth in Two Different
Tadpole Neuron Types

The focus of this section is to illustrate the results of the

optimization procedure as applied to the growth model and to

demonstrate that the growth model can successfully generate

realistic axon projection patterns of two tadpole spinal neuron

types using these optimized parameters. First, we introduce the

basic morphology of two tadpole spinal neuron types with crossing

and non-crossing axons. Then we describe the sequence of stages

in the generation of whole axons using the growth model, followed

by examples of axon growth in the two spinal neuron types.

Spinal neurons and their morphology. As in all verte-

brates, newly formed neurons in the tadpole spinal cord lie in a

broadly dorsal to ventral sequence: sensory neurons, sensory

interneurons, premotor interneurons, motoneurons. There are

remarkably few types of spinal neuron, possibly less than ten [47].

Seven neuron types control swimming, the principal behavioural

response of the young tadpole [28]. The projection patterns of the

growing axons of all spinal neurons fall broadly into two distinct

groups: those with uncrossed (ipsilateral) axons, like aINs, and

those with crossing (commissural) axons like cINs (Fig. 5). For

aINs, a primary axon projects longitudinally towards the head

and, at a variable distance from the soma, a secondary axon

branches from the first axon and projects towards the tail. For

cINs, the primary axon crosses the ventral floor plate to the

opposite side and then turns to project longitudinally towards the

head; at which point a secondary axon branches from the first and

projects towards the tail.

Stages of axon growth simulation. In practice, we found

that a realistic axon trajectory usually has a complex shape and to

approximate the biological axon, the model needed a sequence of

stages (Fig. 6A flowchart). For non-crossing neurons, primary axon

growth started with a brief ‘outgrowth’ stage followed by an

‘orientation’ stage in which typically-ventral growth of the axon

from the soma altered to become longitudinal (Fig. 6B purple).

Orientation was then followed by the ‘main’ longitudinal growth

stage (Fig. 6B brown). The transition from the orientation stage to

the main stage of primary axon growth was set arbitrarily for all

neurons at 100 mm from the axon origin at the soma, measured

longitudinally. For crossing neurons, primary axon growth started

with an ‘outgrowth’ stage in which axons grew ventrally until they

reached and penetrated the floor-plate at ,90u to cross to the

opposite side (Fig. 6B, blue). There was then, again, an orientation

stage in which transverse growth became longitudinal, leading to a

main growth stage. Transition from the orientation stage to main

growth in crossing axons occurred at the point of axon emergence

from the floorplate. Model parameters for primary axons were

obtained using the optimization procedure (see previous section)

only for the main stage of growth, from 100 mm. Axons were

generated during outgrowth and orientation stages using the same

growth model parameters as for the main growth stage; however,

Figure 5. Measured axon projections of two of the tadpole
neuron types: aINs (dark blue) with uncrossed, primary
ascending axons and secondary descending axons; and cINs
(light blue) with crossing, primary ascending axons and
secondary descending axons. In each case, examples are shown
in situ, within the growth environment and also individually to illustrate
their basic morphology.
doi:10.1371/journal.pone.0089461.g005
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the axon trajectories were quite predictable and setting suitable

values for these parameters did not require optimization.

Secondary axon growth involved only a single ‘main’ stage from

a branch point on the primary axon or from the soma (Fig. 6B,

green). Parameters for secondary axons were optimised from their

start point at the branch; the position of the branch point and the

branch angle were obtained using the one-dimensional general-

ization procedure.

Generating a population of neurons with realistic non-

crossing axons. The population of aINs provides an example

of neurons with uncrossed axons. It extends from the caudal

hindbrain along the spinal cord. All aINs have an uncrossed,

ascending primary axon which usually gives rise to a descending

secondary axon from a branch point close to the soma [47]. [48].

In the simulation (Fig. 6C dark blue) ten axons from aINs are

shown. The parameter values for the short ‘outgrowth’ stage and

the start of the ‘orientation’ phase of primary axon growth were:

~ggR~0:02, gV ~0:02 and gD~0:03, and the optimized values for

the main growth were gR~0:054, �ggV ~0:13 and �ggD~0:038.

During the orientation stage, the starting values made smooth

transitions to their final values, changing exponentially (Eq. 5) with

decay rates cR~ ln (10)=30,cV ~ ln (10)=100 and cD~ ln (10)=100
respectively. Stochasticity was given by a~0:09. The secondary

axons were adequately generated using the same parameters as for

the main, primary axon growth.

Generating a population of neurons with realistic

crossing axons. Like aINs, the population of cINs extends

from the caudal hindbrain down the length of the spinal cord. The

primary cIN axons are initially directed ventrally, like those of

aINs, but continue to grow ventrally, enter the ventral floor plate

and cross to the opposite side (Fig. 6C light blue). During

modelling, the trajectory of this outgrowth stage was directed by

the initial growth angle, and by weak rostral and ventral

attractions: gR~{0:006, gV ~{0:02 and a~0:08. On leaving

the floor plate on the other side, cIN primary axons then turn to

project longitudinally. This change to a longitudinal path was

controlled during the orientation stage by a smooth transition from

a starting set of parameter values: ~ggR~0:1, ~ggV ~0:05 and ~ggD~0:8
to a final set of values optimized for the main stage of ascending

axon growth: �ggR~0:019, �ggV ~0:0055 and �ggD~0:35. This

transition during the orientation stage was governed by the

exponential functions described by equations (5) with the decay

rates cR~ ln (10)=30,cV ~ ln (10)=100 and cD~ ln (10)=100 re-

spectively. Stochasticity was given by a~0:069. Most cINs have a

descending, secondary axon that arises as a branch on the primary

axon once it has crossed ventrally and emerged from the floor

Figure 6. Stages of axon growth and model axon projections. (A) Flowchart summarising the sequence of stages in modelling axon growth
for neurons with crossed or uncrossed axons. Rectangles denote axon growth stages; ovals denote values obtained using generalization procedures.
Note that a secondary axon can branch from the ‘orientation’ or ‘main’ region of a primary axon. (B) Illustration of the main stages of axon growth
described in A. In these examples, both primary axons are ascending. Asterisks indicate branch points. (C) Axon projections generated by the growth
model for uncrossed aINs (dark blue) and crossing cINs (light blue). Ten examples of each type are shown in situ with some of each type separated to
show their individual morphology. Compare to real examples in Figure 5. Bar charts compare the proportions of the main growth for the primary
axon projections in real and model axons in 10 mm dorso-ventral bins (projections sampled every 1 mm).
doi:10.1371/journal.pone.0089461.g006
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plate. The position of the branch and the initial axon growth angle

for the secondary axon were obtained by one-dimensional

generalization. Optimized secondary axon growth parameter

values were: �ggR~0:11, �ggV ~0:039, �ggD~0:03 and a~0:14.

Simulation of the axons of these two examples of spinal neurons

shows that the growth model based on axon guidance by a

gradient field can generate biologically realistic morphologies of

both crossing and non-crossing neurons in the tadpole spinal cord.

The similarity between the dorso-ventral distributions of real and

model axons is shown by the bar charts in Figure 6C.

Simulation software. All simulations in this section were

performed using software called SC2D (‘‘spinal cord in 2

dimensions’’), which provides a framework for axon growth of

different types of neurons in a two dimensional environment. This

code was written for MATLAB and runs on a standard PC

computer. The code is available on request.

Longitudinal axon growth and the importance of the

random variable. Mathematical analysis of the difference

equations of axon growth shows that axon growth monotonically

along the longitudinal co-ordinates (either in the ascending or

descending direction) tends asymptotically to some particular

dorso-ventral position, designated �yy A particular value of �yy
depends on the sensitivity parameters (�ggV ,�ggD) (see Supporting

Information S3 ‘‘Mathematical analysis of difference equations of

axon growth’’ for details of the analysis and the derivation of �yy).

This latter tendency is heavily influenced by the random variable

a, which controls the shape of the generated axon (Fig. 7A–C).

Optimal aIN parameters (�ggR~0:054,�ggD~0:038,�ggV ~0:13,

which give a value of �yy~83:2) were used to generate 50 axons

with their initial positions uniformly distributed dorso-ventrally

between 25–145 mm. The initial longitudinal position was fixed at

x~2,000 mm and axons were grown in the ascending direction

(outgrowth angle h0 = 180u). Figure 7A shows how axons look if

they are generated without the random variable (a~0). It is clear

that axons tend towards �yy~83:2, as calculated above and

indicated by the red line. In figure 7B, a~0:02 and the influence

of the random variable is rather weak. The tendency towards

�yy~83:2 is still visible (red horizontal line) despite random

perturbations in axon growth trajectory. In figure 7C, a~0:08
(this value is close to the optimal value a~0:09) and exerts a larger

effect; the tendency towards �yy~83:2 is largely obscured by the

random perturbations. With much higher random perturbations

Figure 7. The influence of the random variable and initial angle on ascending axon growth. Groups of 25 ascending axons, grown using
aIN parameters. Note: All axons start at 2000 mm rostro-caudally and from a range of dorso-ventral positions. The fixed point of stability for aINs is
indicated (red line shows �yy~83:2). (A–C) Axon starts are randomly distributed dorso-ventrally. As the random variable is increased (values of a
indicated), trajectories become more variable: for a~0, axon trajectories approach �yy; for a~0:02 and a~0:08, trajectories increasingly deviate from �yy.
(D)(E) Axons have lengths, dorso-ventral start positions and initial angles distributed according to generalized aIN values. With a~0, no axons reach �yy
within the length of the axon. With a~0:09, the value optimized for aINs, the tendency of growth towards �yy is much less obvious, but the axon
trajectories are much more realistic. (F) Ascending axons of real aINs, aligned rostro-caudally to match the model axons.
doi:10.1371/journal.pone.0089461.g007
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(e.g. a~0:4), very large random deviations are produced where

the axon trajectory varies wildly and may loop in a way that is not

observed biologically (not illustrated).

A group of aIN axons growing with no random variable are also

shown in figure 7D (with the same parameter values and initial

longitudinal position as above). However, in this case, the axons

were made more biologically realistic with axon lengths and

outgrowth angles selected randomly from measured aIN values

using the generalization procedure (see section above). The initial

ventral growth means that axons still tend towards �yy~83:2 but

may not approach it closely before they terminate. Introducing the

random variable, optimized for aINs (a~0:09; Fig. 7E), produces

biologically realistic axon trajectories (compare with real trajecto-

ries for the same neuron type, Fig. 7F), where the tendency of

growth towards �yy is much less clear. In reality, this will allow a

dorso-ventrally distributed set of axon trajectories for each neuron

type despite the underlying tendency to align to a specific dorso-

ventral level.

Generation of an Example Connectome
The primary aim of the work described here was to build a

computational model of axon growth but this model forms the

core of a novel developmental approach to assembling large

networks of interconnected neurons (connectomes). The first two

stages of this process were the assignment of soma positions and

dendritic extents within the growth environment. The significance

of each soma position is simply that its co-ordinates are the start

point for growth of the axon, and also the rostro-caudal position of

its dendritic ‘‘field’’, designated simply by a dorsal and ventral

extent (Fig. 8A) based on two-dimensional generalization. Follow-

ing axon growth using the appropriate parameters for each neuron

type, synaptic connections could form where the axon of one

neuron met the dendrite of another neuron. The probability that a

meeting would actually produce a contact was set at 0.46 for most

pairs but 0.63 for sensory pathway connections, based on

electrophysiological evidence from paired recordings [1], so not

all axon-dendrite meetings produced a synapse (Fig. 8A). Figure 8B

illustrates a portion of a partial connectome using just two neurons

types (aIN and cIN). The trajectories of most axons are primarily

longitudinal. Other directions are mainly axons in their orienta-

tion stage after leaving the soma or emerging from the floor plate

(cIN). The total number of aIN neurons on one side is 68 and the

total number of cIN neurons on the same side is 192. Growing

axons of these 260 neurons produce 17,725 synapses on one side of

the spinal cord. Thus, figure 8B clearly shows that even a small

portion of the connectome looks very complex.

Discussion

A New Approach to Establishing Complete Connectivity
In this paper we present and discuss the derivation and

operation of a model for generating axons in a two-dimensional

environment, under the control of a set of gradient cues. The

specific goal was to develop a model system that could be used as

part of a developmental approach to re-constructing all the

neuronal connections in the brain and spinal cord network that

Figure 8. Connectome generation. A. Diagram with two longitudinally-running axons passing the dendrites (vertical bars) of three aIN neurons.
Synapses (circles) can form (with probability = 0.46) where an axon meets a dendrite. B. Part of the growth field showing a region of a partial
connectome formed by populations of just two neuron types (aIN, dark blue and cIN, light blue). Asterisks indicate dendrites of cINs.
doi:10.1371/journal.pone.0089461.g008
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controls the locomotor behaviour in a simple vertebrate, the young

Xenopus tadpole. Even in this simple animal, it would be impossible

to establish the complete connectome except by serial EM

reconstruction. The crux of the developmental approach was to

start with real, though hard to obtain and therefore limited,

anatomical data and use these to generate entire axon distributions

for realistically large numbers of each type of neuron. This aim

could be achieved by generating axon populations whose statistical

characteristics matched those of the smaller data sets of real,

measured axons for each neuron type. The broader aim in

producing this new axon growth model was to provide a tool for

generating the axons of any neurons growing in such an

environment as a step towards predicting large scale CNS

connections. A key feature of this model is that control of axon

growth is based on a biologically realistic mechanism: the

sensitivity of the growth cone at the tip of the growing axon to

gradient cues representing the kinds of diffusible chemical

gradients that have been proposed in the nervous system [49],

[17]. In this way, the model adds biological reality to an earlier

model of axon growth applied to the tadpole spinal cord [1], [33].

Although it was possible with this earlier phenomenological model

to fit experimental evidence, the model was formulated in terms of

a very simple two-dimensional system of difference equations with

parameters which did not correspond to biological reality. In

contrast, the current gradient-based model is biologically plausible

and its parameters can be interpreted in biological terms.

In the new gradient based model that we present here, we try to

keep a balance between important biological details (such as

gradient cues to guide the axon growth) and model simplification

(such as our coarse grain approach which does not include detailed

consideration at the level of growth cone filopodia and molecular

mechanisms). Recent work has uncovered many of the molecules

which are involved in the process of axon guidance (chemotaxis)

however, the nature of any gradients and the mechanisms

underlying chemotaxis are still unclear [5], [19], [38], [50]. For

a recent review on theoretical modelling of neural development

including models of axon growth, see [51]. Methods are starting to

be developed for visualizing morphogen gradients [10], but the

shapes of those in the tadpole are still unknown. Importantly, our

new model includes specific expressions for individual gradients,

which can be modified to incorporate future experimentally-

determined descriptions of the real gradients.

Outline of Features of Model
The new gradient model of axon growth that has been

developed has been applied to generate biologically realistic sets

of axons for different types of tadpole spinal neuron. Although the

axon growth model comprises three nonlinear difference equa-

tions, a key part of the model is a nonlinear difference equation for

the growth angle. This equation also includes projections of three

gradients (one rostro-caudal and two dorso-ventral) to the current

growth direction.

The model includes two sets of parameters: those which

describe a common gradient environment where all axons grow;

and a set of sensitivity parameters which are specific for each

particular type of neuron and for each part (primary or secondary)

and each stage (outgrowth, orientation and main) of the growing

axon. Values for some of these specific parameters are obtained

from measured data using a generalization procedure, but four of

them have been defined using an optimization procedure to fit the

model in the best way to real, biological measurements. A chosen

cost function, used as the basis for the optimization procedure,

includes a random variable and therefore, this function is not

smooth and a special algorithm of stochastic optimization had to

be used here.

Generation of Axons with Biologically Realistic Features
This model is relatively simple, and includes only four

adjustable parameters (three sensitivities and the range of the

random variable). However, it was still possible to obtain a good fit

of the model to biological measurements for each type of neuron,

including the two examples illustrated here.

The gradient model of axon growth includes a key computa-

tional part which is a universal algorithm for axon growth.

However, to satisfy the multiple requirements and limitations

imposed by different biological realities (e.g. limitations of axon

length, physical barriers which impede axon growth in particular

locations, the distribution of branching points along the primary

axons etc), the model of axon growth has to be combined with

additional algorithms to generate biologically realistic axons. For

example, it is very important to start each simulation of axon

growth from an initial angle in a specific range, representing the

initial outgrowth from the soma. To define this range, a

generalization procedure was developed for random selection of

the initial angles from a distribution which coincides with the

distribution of measured initial angles. The model of axon growth

is used sequentially with different stages of axon generation for

axons which grow on one side and also crossing neurons which

grow their axons from one side of the body to the other.

An important feature of the model as applied to the tadpole

spinal cord is that axons grow until they reach a particular length

rather than a particular target. Early in development, the axons

make synapses ‘‘en passant’’ along their length rather than only

once they have reached a target. The trajectory itself is therefore

important in terms of the dendrites that may be encountered; the

final destination may not be. We generalized from a sample of

observed axon lengths in the model; in reality we do not know

what determines this parameter.

A mathematical study of a simplified version of the model

without a random component shows that there is a specific dorso-

ventral co-ordinate which attracts a growing axon. However, the

random component of axon growth masks the influence of this

attractive dorso-ventral position and enables the generation of

axons which are similar to the real axons. It is interesting to note

that the variance of the random variable needs to be carefully

chosen by the optimization procedure.

Other Models of Axon Growth
Several recent models have considered the details of chemotaxis

at the molecular level. For example, in the model of Mortimer

et al., [52] each receptor measures the number of unbound - to -

bound transitions and this information is important for optimal

chemotaxis performance. This study also presented some impor-

tant conclusions on the nature of noise, which can be used for a

better description of the random component of axon growth. Our

model includes a uniformly distributed random variable in a

suitably small, specified range. The uniform distribution was

selected after several trials of other distributions to check the

possibility of better fitting of the model to real, biological

measurements. Other work has described how the Bayesian

approach can be used to model the way axons detect gradients and

how this guides axon growth [53], [54]. This probabilistic

approach is very powerful and provides optimal chemotaxis even

in the case of long axons. Mortimer et al., [52] also compared two

different approaches to axon growth: 1) a short step elongation

along the same direction plus deviation according to the gradient

field; 2) modulation of growth rate with long enough steps along
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the same direction. It was shown that the first mechanism

dominates in steep gradients and the second one is more effective

in shallow gradients. In our modelling we are closer to the second

approach: a small fixed step size of 1 mm along the same direction

and re-calculation of a new direction at every step of the

computational algorithm. The selected step size is small enough

to allow a good axon flexibility but big enough for effective

computational procedure.

Another interesting mathematical model [55] aimed to explain

a regulatory mechanism where an axon is attracted or repelled by

molecular gradients. It was shown theoretically and confirmed

experimentally that the ratio of calcium to cAMP is a trigger

changing attraction to repulsion and vice versa. Our model of

axon growth also is able to switch from attraction to repulsion. In

our modelling of commissural neurons we follow some remarkable

experimental findings suggesting that the initial part of the axon is

guided by attraction to the ventral gradient cue on one side of

body but after crossing to the opposite side this cue become

repulsive [24], [25], [26], [56].

Applying the Model to Other Systems
The model of axon growth and, more broadly, the ‘‘develop-

mental approach’’ to predicting interneuronal connections seems

to be general enough for application in other neuronal systems.

Although the axon growth model works in two dimensional space,

appropriate for the tadpole spinal cord, where axon growth is

restricted to a shallow outer layer of the cord, it is easy to expand

the model and generalization algorithms for the three dimensional

case by adding additional angles describing the growth direction in

three dimensional space. Thus, in many cases where generaliza-

tion from a small amount of real, biological data is needed, an

expanded axon growth model and developmental approach can

be used as a tool in establishing connectivity between neurons.

It would be interesting to compare our SC2D software for

anatomical modelling of growing neuron components (soma,

dendrite, growing axon branches) in a two dimensional environ-

ment with the simulation tool CX3D [57] for modelling the 3D

developmental processes in the neocortex. Combining fundamen-

tal ideas and approaches from different simulation tools may result

in progress toward a better biologically realistic tool for

developmental modelling. Indeed, elements of our previous model

[58] have already been used with an extension of the CX3D

software to model the growth of axons in cells of the pheochro-

mocytoma cell line 12 (PC12) [59]. Because our new model, while

still remaining relatively simple, is more directly rooted in

biological processes, through use of gradient-based axon guidance,

we expect it to form a more attractive basis for network modelling

in other systems.

Using the Axon Growth Model to Generate a
Connectome

Our long-term aim in building neuron growth models is to use

them to generate a complete, biologically realistic connection

architecture or ‘‘connectome’’ for the network in the tadpole

brainstem and spinal cord which controls swimming [33]. The

procedure we used here, with the new biologically plausible axon

growth model at its core, started with the distribution of ,2000

neuron somata along the length of a 2-D opened-out CNS and

from this generated a map of ,200,000 synapses. The result of our

novel developmental approach is a biologically realistic map of the

connections in the spinal cord and brainstem network controlling

tadpole swimming, reconstructed on the basis of generalization of

data from a limited number of biological measurements.

Evaluation of this connectome has required mapping it onto a

functional, conductance-based neuronal network model where we

can test whether the connections generated by the growth model

are able to produce swimming activity in response to ‘‘sensory’’

stimuli. Details of connectome properties and the functional

swimming model are described separately [60].
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