937 research outputs found

    Periodic cometary showers: Real or imaginary?

    Get PDF
    Since the initial reports in 1980, a considerable body of chemical and physical evidence has been accumulated to indicate that a major impact event occurred on earth 65 million years ago. The effects of this event were global in extent and have been suggested as the cause of the sudden demise or mass extinction of a large percentage of life, including the dinosaurs, at the end of the geologic time period known as the Cretaceous. Recent statistical analyses of extinctions in the marine faunal record for the last 250 million years have suggested that mass extinctions may occur with a periodicity of every 26 to 30 million years. Following these results, other workers have attempted to demonstrate that these extinction events, like that at the end of the Cretaceous, are temporally correlated with large impact events. A recent scenario suggests that they are the result of periodic showers of comets produced by either the passage of the solar system through the galactic plane or by perturbations of the cometary cloud in the outer solar system by a, as yet unseen, solar companion. This hypothesized solar companion has been given the name Nemesis

    Water adsorption on vanadium oxide thin films in ambient relative humidity.

    Get PDF
    In this work, ambient pressure x-ray photoelectron spectroscopy (APXPS) is used to study the initial stages of water adsorption on vanadium oxide surfaces. V 2p, O 1s, C 1s, and valence band XPS spectra were collected as a function of relative humidity in a series of isotherm and isobar experiments. Experiments were carried out on two VO2 thin films on TiO2 (100) substrates, prepared with different surface cleaning procedures. Hydroxyl and molecular water surface species were identified, with up to 0.5 ML hydroxide present at the minimum relative humidity, and a consistent molecular water adsorption onset occurring around 0.01% relative humidity. The work function was found to increase with increasing relative humidity, suggesting that surface water and hydroxyl species are oriented with the hydrogen atoms directed away from the surface. Changes in the valence band were also observed as a function of relative humidity. The results were similar to those observed in APXPS experiments on other transition metal oxide surfaces, suggesting that H2O-OH and H2O-H2O surface complex formation plays an important role in the oxide wetting process and water dissociation. Compared to polycrystalline vanadium metal, these vanadium oxide films generate less hydroxide and appear to be more favorable for molecular water adsorption

    Absolute Quantification of Uric Acid in Human Urine Using Surface Enhanced Raman Scattering with the Standard Addition Method.

    Get PDF
    High levels of uric acid in urine and serum can be indicative of hypertension and the pregnancy related condition, preeclampsia. We have developed a simple, cost-effective, portable surface enhanced Raman scattering (SERS) approach for the routine analysis of uric acid at clinically relevant levels in urine patient samples. This approach, combined with the standard addition method (SAM), allows for the absolute quantification of uric acid directly in a complex matrix such as that from human urine. Results are highly comparable and in very good agreement with HPLC results, with an average <9% difference in predictions between the two analytical approaches across all samples analyzed, with SERS demonstrating a 60-fold reduction in acquisition time compared with HPLC. For the first time, clinical prepreeclampsia patient samples have been used for quantitative uric acid detection using a simple, rapid colloidal SERS approach without the need for complex data analysis

    Rapid and quantitative detection of the microbial spoilage of meat by Fourier Transform Infrared Spectroscopy and machine learning

    Get PDF
    Fourier transform infrared (FT-IR) spectroscopy is a rapid, noninvasive technique with considerable potential for application in the food and related industries. We show here that this technique can be used directly on the surface of food to produce biochemically interpretable “fingerprints.” Spoilage in meat is the result of decomposition and the formation of metabolites caused by the growth and enzymatic activity of microorganisms. FT-IR was exploited to measure biochemical changes within the meat substrate, enhancing and accelerating the detection of microbial spoilage. Chicken breasts were purchased from a national retailer, comminuted for 10 s, and left to spoil at room temperature for 24 h. Every hour, FT-IR measurements were taken directly from the meat surface using attenuated total reflectance, and the total viable counts were obtained by classical plating methods. Quantitative interpretation of FT-IR spectra was possible using partial least-squares regression and allowed accurate estimates of bacterial loads to be calculated directly from the meat surface in 60 s. Genetic programming was used to derive rules showing that at levels of 10(7) bacteria·g(−1) the main biochemical indicator of spoilage was the onset of proteolysis. Thus, using FT-IR we were able to acquire a metabolic snapshot and quantify, noninvasively, the microbial loads of food samples accurately and rapidly in 60 s, directly from the sample surface. We believe this approach will aid in the Hazard Analysis Critical Control Point process for the assessment of the microbiological safety of food at the production, processing, manufacturing, packaging, and storage levels

    Functional genomics via metabolic footprinting: monitoring metabolite secretion by Escherichia coli tryptophan metabolism mutants using FT-IR and direct injection electrospray mass spectrometry

    Get PDF
    We sought to test the hypothesis that mutant bacterial strains could be discriminated from each other on the basis of the metabolites they secrete into the medium (their ‘metabolic footprint’), using two methods of ‘global’ metabolite analysis (FT–IR and direct injection electrospray mass spectrometry). The biological system used was based on a published study of Escherichia coli tryptophan mutants that had been analysed and discriminated by Yanofsky and colleagues using transcriptome analysis. Wild-type strains supplemented with tryptophan or analogues could be discriminated from controls using FT–IR of 24 h broths, as could each of the mutant strains in both minimal and supplemented media. Direct injection electrospray mass spectrometry with unit mass resolution could also be used to discriminate the strains from each other, and had the advantage that the discrimination required the use of just two or three masses in each case. These were determined via a genetic algorithm. Both methods are rapid, reagentless, reproducible and cheap, and might beneficially be extended to the analysis of gene knockout libraries

    A modification of Honoré's triple-link model in the synoptic problem

    Get PDF
    In New Testament studies, the synoptic problem is concerned with the relationships between the gospels of Matthew, Mark and Luke. In an earlier paper a careful specification in probabilistic terms was set up of Honoré's triple-link model. In the present paper, a modification of Honoré's model is proposed. As previously, counts of the numbers of verbal agreements between the gospels are examined to investigate which of the possible triple-link models appears to give the best fit to the data, but now using the modified version of the model and additional sets of data

    Implementation of Fourier transform infrared spectroscopy for the rapid typing of uropathogenic Escherichia coli.

    Get PDF
    In this paper, we demonstrate that Fourier transform infrared (FT-IR) spectroscopy is able to discriminate rapidly between uropathogenic Escherichia coli (UPEC) of key lineages with only relatively simple sample preparation. A total of 95 bacteria from six different epidemiologically important multilocus sequence types (ST10, ST69, ST95, ST73, ST127 and ST131) were used in this project and principal component-discriminant function analysis (PC-DFA) of these samples produced clear separate clustering of isolates, based on the ST. Analysis of data using partial least squares-discriminant analysis (PLS-DA), incorporating cross-validation, indicated a high prediction accuracy of 91.19% for ST131. These results suggest that FT-IR spectroscopy could be a useful method for the rapid identification of members of important UPEC STs

    Guidelines and considerations for the use of system suitability and quality control samples in mass spectrometry assays applied in untargeted clinical metabolomic studies

    Get PDF
    Background Quality assurance (QA) and quality control (QC) are two quality management processes that are integral to the success of metabolomics including their application for the acquisition of high quality data in any high-throughput analytical chemistry laboratory. QA defines all the planned and systematic activities implemented before samples are collected, to provide confidence that a subsequent analytical process will fulfil predetermined requirements for quality. QC can be defined as the operational techniques and activities used to measure and report these quality requirements after data acquisition. Aim of review This tutorial review will guide the reader through the use of system suitability and QC samples, why these samples should be applied and how the quality of data can be reported. Key scientific concepts of review System suitability samples are applied to assess the operation and lack of contamination of the analytical platform prior to sample analysis. Isotopically-labelled internal standards are applied to assess system stability for each sample analysed. Pooled QC samples are applied to condition the analytical platform, perform intra-study reproducibility measurements (QC) and to correct mathematically for systematic errors. Standard reference materials and long-term reference QC samples are applied for inter-study and inter-laboratory assessment of data
    corecore