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Abstract
We sought to test the hypothesis that mutant bacterial strains could be discriminated
from each other on the basis of the metabolites they secrete into the medium (their
‘metabolic footprint’), using two methods of ‘global’ metabolite analysis (FT–IR and
direct injection electrospray mass spectrometry). The biological system used was
based on a published study of Escherichia coli tryptophan mutants that had been
analysed and discriminated by Yanofsky and colleagues using transcriptome analysis.
Wild-type strains supplemented with tryptophan or analogues could be discriminated
from controls using FT–IR of 24 h broths, as could each of the mutant strains in both
minimal and supplemented media. Direct injection electrospray mass spectrometry
with unit mass resolution could also be used to discriminate the strains from each
other, and had the advantage that the discrimination required the use of just two
or three masses in each case. These were determined via a genetic algorithm. Both
methods are rapid, reagentless, reproducible and cheap, and might beneficially be
extended to the analysis of gene knockout libraries. Copyright  2003 John Wiley &
Sons, Ltd.

Keywords: metabolome; metabolomics; metabolic footprinting; mass spectrometry;
FTIR spectroscopy; Escherichia coli ; tryptophan; genetic algorithm

Introduction

The systematic and complete genome sequencing
of many organisms, including Escherichia coli
(Blattner et al., 1997, 1998; Liang et al., 2002;
Riley and Serres, 2000), brings the need to estab-
lish the cellular functions of all the genes, including
the many novel genes, thereby uncovered (Brent,
1999, 2000; Clare and King, 2002; Hieter and
Boguski, 1997; Kell and King, 2000; King et al.,
2000; Oliver, 1996; Skolnick et al., 2000). Typical
strategies include expression profiling at the level
of the transcriptome (Burge, 2001; Devaux et al.,
2001; Jurgen et al., 2001; Oshima et al., 2002;
Tjaden et al., 2002) and the proteome (Akashi

and Gojobori, 2002; Auer et al., 1998; Champion
et al., 2001; Choe et al., 1998; Dunn, 1998; Futcher
et al., 1997, 1999; Han et al., 2001; Joubert-Caron
and Caron, 1999; Jurgen et al., 2001; Kabir and
Shimizu, 2001; Loo et al., 2001; Thomas, 1999)
and, given the importance of metabolism to cel-
lular physiology (Cornish-Bowden and Cardenas,
2000; Michal, 1999), at the level of metabolism.
With the emergence of many useful genomics-
derived databases of metabolism (e.g. Goryanin
et al., 1999; Kanehisa and Goto, 2000; Karp et al.,
1996, 2002a, 2000b; Mendes, 2002; Ouzounis and
Karp, 2000; Schilling and Palsson, 2000; Tomita
et al., 1999; Wixon and Kell, 2000), experimental
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analysis of the metabolome (Kell and Mendes,
2000; Oliver, 1996, 1997; Oliver et al., 1998;
Raamsdonk et al., 2001; ter Kuile and Westerhoff,
2001), the complement of low molecular weight
metabolites in a cell (Covert et al., 2001; Fiehn,
2001, 2002; Fiehn et al., 2000, 2001; Hall et al.,
2002; Kose et al., 2001; Roessner et al., 2001; Tay-
lor et al., 2002) is now being seen as another essen-
tial step for improving our understanding of the
living cell. In order to study these metabolites a
number of factors have to be considered, as the
changes that take place will be multiple, will affect
molecules with very different chemistries, and there
will be both intracellular and extracellular changes
(e.g. Kramer, 1994). Their quantification, detec-
tion and identification using new technologies and
methodologies provide both hurdles and opportu-
nities.

Nuclear magnetic resonance (NMR) spec-
troscopy has been used for determination of in vivo
metabolite levels in intact cells and cell extracts
(Nicholson et al., 1999; Raamsdonk et al., 2001;
Warne et al., 2000) but the low sensitivity of the
method in most laboratories restricts its use (Hart-
brich et al., 1996). More recently, a novel NMR
spectroscopic approach to the direct biochemical
characterization of bacterial culture broths was pre-
sented (Abel et al., 1999). Low molecular weight
organic components of broth supernatants from
cultures of Streptomyces citricolor were analysed
using one- (1D) and two-dimensional (2D) 1H-
NMR spectroscopic methods; it was possible to
identify and monitor simultaneously a range of
media substrates and excreted metabolites which
included 2-phenylethylamine, trehalose, succinate,
acetate, uridine and aristeromycin. Signals were
extensively overlapped in the 1H-NMR spectra
of the whole broth mixtures, so directly coupled
HPLC–NMR spectroscopy was also applied to
the analysis of broth supernatants to aid spectral
assignments. Multiple bond correlation for struc-
tural elucidation and peak assignments of individ-
ual components was also conducted using 2D NMR
methods based on 1H–1H and 1H–13C correlations.
This work showed that high-resolution NMR spec-
troscopic methods could provide a rapid and effi-
cient means of investigating microbial metabolism
directly without invasive or destructive sample pre-
treatment. van Eijk developed a high-throughput
screening method using LC–MS (Caceres et al.,
2000; van Eijk et al., 1999) to study the amino

acids, in which the simultaneous application (and
thus measurement) of multiple amino acid tracers
was used coupled to liquid chromatography and
mass spectrometry, resulting in the measurement
of both the concentration and isotope enrichment
of O-phthaldialdehyde (OPA)-derivatized plasma
amino acids in one run. Considering the easier
and cheaper derivatization procedure and instru-
mentation, the simultaneous collection of iso-
topomeric distribution spectra (enabling the appli-
cation of multiple labelled components) and con-
centration data, the method presents an attractive
alternative to traditional GC–MS applications for
amino acids. Therefore, combining liquid chro-
matography with electrospray mass spectrometry
(LC–ESI–MS) methods is attractive (Buchholz
et al., 2001; Cole, 1997; Gaskell, 1997; Magera
et al., 2000) and recent innovations with extended
capabilities allow both small metabolite and large
biomolecular analysis via LC–ESI–MS (Krish-
namurthy et al., 1999) and direct infusion and
flow-injection ESI–MS (Goodacre et al., 1999,
2000, 2002, 2003; Vaidyanathan et al., 2001,
2002). In particular, LC–DAD–MS, MS–MS and
MALDI–TOF may be highly automated, opening
up high-throughput screening (HTS) and easier and
simpler data acquisition and analysis.

Ferenci and co-workers have adopted a
metabolomic approach to the analysis of E. coli
(Liu et al., 2000; Tweeddale et al., 1998, 1999).
They used radioisotopic labelling and extracted
the cells, and apparently the medium, with a
final concentration of 67% boiling ethanol for
30 min. One may assume that only the most
stable metabolites survived this treatment, and
indeed only about a dozen were identified via
2D thin-layer chromatography. We have chosen
to use mass spectrometry for our analyses as
it is a sensitive and rapid technique, does not
require radio-isotopes, and is potentially capable of
discriminating many more metabolites (than TLC)
from their mass/charge ratio alone (and if such
is available to identify many more via tandem
analyses; Rashed et al., 1997; Vaidyanathan et al.,
2002). Additionally, FT–IR, a method which
measures the overall composition of a sample
by detecting the molecular vibrations and other
motions of chemical bonds, is another excellent
method for rapid screening of microbial samples
(Goodacre et al., 1998a, 1998b; Naumann et al.,
1995; Oliver et al., 1998; Timmins et al., 1998).

Copyright  2003 John Wiley & Sons, Ltd. Comp Funct Genom 2003; 4: 376–391.
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Table 1. Genotypes of strains provided by Professor Yanofsky and used in the
present work

W3110 Wild-type

CY15682 TrpR2 (repressor minus) trpR2 is a tryptophan repressor
CY15000 TnaA2 (tryptophanase minus) Prevents tryptophan degradation
CY15001 TrpR2 tnaA2 No repressor and no tryptophanase
CY15602 �trpEA2 (trp operon deleted) Entire operon deleted
CY15680 TrpR2 �trpEA2 trp repressor and operon deleted
CY15681 TnaA2 trpA46PR9 (trpA bradytroph) tnase deleted

However, metabolomic fingerprinting of micro-
bial strains has two major difficulties: (a) the
turnover time of the intracellular metabolites can be
very fast (De Koning and van Dam, 1992), neces-
sitating the very rapid quenching of metabolism;
and (b) the intracellular volume of a typical micro-
bial suspension at a concentration of 1 mg wet
weight/ml occupies only some 0.1% of the total
volume, and removing the small intracellular vol-
ume from the much larger extracellular volume can
(indeed, is likely to) lead to contamination of the
former by the latter. However, given that microbes
are rarely if ever enjoying balanced growth, and
must (and do) secrete any number of substances
into the medium, it occurred to us that we might
make a virtue of necessity by exploiting the fact
that what is secreted must reflect the exact genetic
make-up of the strain in question (Allen et al.,
2003) and might therefore be used, according to the
principles of ‘guilt by association’ (Oliver, 2000)
or supervised learning (Kell and King, 2000), for
the purposes of functional genomics in gene knock-
out strains. What was not known, however, was
whether the metabolic footprints would be either
sufficiently reproducible or discriminating as a dif-
ferent kind of ‘fingerprinting’ technique (Fiehn,
2001) to allow such discrimination in E. coli. We
therefore decided to test this hypothesis explicitly.

We investigated tryptophan metabolism mutant
strains selected by Yanofsky and co-workers (Kho-
dursky et al., 2000a; Yanofsky and Horn, 1994),
who studied changes in gene expression profiles of
the strains in response to tryptophan-supplemented
and partially and/or totally tryptophan-starved con-
ditions in defined media (Tao et al., 1999). These
strains had deletions in tryptophan repressor gene
(trpR) or tryptophanase gene (tnaA2 ) (Kamath
and Yanofsky, 1992), tryptophan operon deletion
(trpEA2 ) and a leaky auxotroph, trpA bradytroph

(trpA46PR9 ) (see Table 1). Hierarchical cluster-
ing of the profiles revealed changes in expression
of a total of 691 genes with identification and
functional roles assigned to 169 of the genes. As
the transcriptome profiling showed specific func-
tional alterations (Featherstone and Broadie, 2002;
ter Kuile and Westerhoff, 2001) we predicted that
there might be metabolite changes as well and these
changes were monitored in filtered culture super-
natants and sample analysis [after cellular metabo-
lite (‘fingerprinting’) extraction using both perchlo-
ric and hot ethanol methods after LC separation of a
range of metabolites and direct culture supernatant
(‘footprinting’)], using FT–IR and ESI–MS. The
FT–IR and MS spectral profiles were processed
chemometrically (Beavis et al., 2000; Goodacre
and Kell, 2003; Raamsdonk et al., 2001; Shaw
et al., 1999a; Smith, 1998).

Materials and methods

Strains, kindly provided by Professor Yanofsky,
with genotypes as shown in Table 1, were grown
in defined media composed of 0.2 g glucose,
0.2 g MgSO4.7H2O, 2 g citric acid, 10 g anhy-
drous K2HPO4 and 3.5 g NaNH4HPO4·4H2O per
litre (Heatwole and Somerville, 1992), with added
indole acrylate or tryptophan where stated. The
inoculum was grown under the same conditions as
the experimental flasks in 2 ml volumes in sterile
tubes for 24 h at 30 ◦C and 200 rpm. Experimen-
tal 500 ml flasks with 100 ml medium were grown
for 24 h, as above. The final OD600 of the cultures
was approx 2, equivalent to final cell densities of
some 109/ml.

Intracellular metabolite (fingerprinting)
extraction methods
Duplicate samples for metabolite extraction were
withdrawn 24 h after growth.

Copyright  2003 John Wiley & Sons, Ltd. Comp Funct Genom 2003; 4: 376–391.
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Perchloric acid extraction

A 5 ml volume of a culture was squirted into
15 ml −40 ◦C pre-chilled 60% methanol buffered
with 70 mM HEPES/KOH, pH 7.5, mixed rapidly
and centrifuged at −20 ◦C for 5 min at 5000 × g .
The supernatant was discarded and the pellet was
resuspended in 2 ml 35% (v/v) perchloric acid
and stored at −80 ◦C for 1 h, thawed on ice
and centrifuged as before. A 2 ml volume was
withdrawn from the supernatant and neutralized
with 4 × 200 µl 5 M K2CO3 (pH checked and
adjusted if necessary). The sample was frozen at
−80 ◦C, thawed and pH-monitored again. It was
re-centrifuged and the supernatant was removed,
aliquoted and stored frozen at −40 ◦C. For the
control, a 5 ml volume was treated similarly to the
metabolite extraction with perchloric acid (Meyer
et al., 1999). Perchloric acid was preferred here
to ethanol extraction as many more metabolites
were extracted (unpublished; but see also Buchholz
et al., 2001).

Culture supernatant sample preparation
(footprinting)

Extracellular secretion of intracellular metabolites
was monitored in the culture medium after 24 h
growth of the bacterial strains under varying
growth conditions at 30 ◦C and 200 rpm, with cells
removed using 0.22 µm filter units. Controls were
fresh media at 0 h and wild-type grown on freshly
prepared medium on three separate days with sam-
ples taken for analysis.

In this type of strategy (Hastie et al., 2001; Kell
and King, 2000), the accepted norm is to ‘train’
using a subset of samples and project in the data
from a different set of replicates to ensure (i.e.
demonstrate) that one is not overfitting the data.
Thus we used a number of different replicates
from different days for this purpose (see legends
to Figures).

FT–IR analysis

Analysis by FT–IR with automated HTS was car-
ried out with each sample run as six replicates
of 10 µl volume/well on 100-well aluminium plate
(Goodacre et al., 1998a). The plate was oven-dried
at 50 ◦C for 30 min prior to analysis and loaded
onto the motorized stage of a reflectance TLC

accessory of a Bruker IFS28 FT–IR spectrome-
ter (Bruker Spectrospin, Coventry, UK) equipped
with a mercury–cadmium–telluride (MCT) detec-
tor cooled with liquid N2. The spectral range was
4000–600 cm−1 and 256 co-adds were used (Win-
son et al., 1997).

ESI–MS analysis for fingerprinting

A Waters Alliance 2690 HPLC linked to a Pho-
todiode array detector 996 (DAD) and Micromass
LCT electrospray mass spectrometer were used for
analysis of the metabolites. A 10 µl sample vol-
ume was first separated on a 200 × 4 mm chiral
Nucleodex β-OH column using 12 mM ammonium
acetate : methanol (99 : 1) as eluent at a flow rate of
500 µl/min and an isocratic gradient with a 10 min
metabolite separation and 30 min column wash. A
40 µl/min stream was directed after splitting the
volume into the MS for further analysis in the range
65–815 m/z . The MS was optimized with capil-
lary voltage at 2000 V, source temperature 80 ◦C,
desolvation temperature at 150 ◦C, nebulizer and
desolvation gas flow at 90 and 540l/h, and sample
cone and extraction cone voltage at 40 V and 11 V,
respectively.

ESI–MS for footprinting

The automated analysis was performed using the
same instruments as above. Samples were diluted
10-fold in 30% HPLC grade methanol and 0.1%
formic acid made up to volume with HPLC grade
water. The samples were de-gassed and large parti-
cles were removed by microcentrifugation (Eppen-
dorf microfuge) at full speed for 3–5 min. Volumes
of 100 µl were dispensed into pre-labelled glass
inserts and placed in tubes in the LC carousel.
A 20 µl volume sample was loaded into the sam-
ple loop using LC solvents (70% 10 mM formic
acid/30% HPLC grade methanol) and pumped at
0.5 ml/min. The total scan cycle was 1 s (0.9 s scan
and 0.1 s interscan delay) and the complete run
time was 2 min. The MS was optimized, leading to
the following final conditions: capillary voltage at
2000 V, source temperature at 80 ◦C, desolvation
temperature at 150 ◦C, nebulizer and desolvation
gas flow at 90 and 540 l/h, and sample cone and
extraction cone voltage at 40 V and 11 V, respec-
tively (Vaidyanathan et al., 2001).

Copyright  2003 John Wiley & Sons, Ltd. Comp Funct Genom 2003; 4: 376–391.



380 N. N. Kaderbhai et al.

Chemometric data processing methods

The FT–IR and mass spectrometric methods
described above produce vast amounts of poten-
tially useful data (Benton, 1996), e.g. LC–MS pro-
duces a spectrochromatogram (an array of the MS
vs. time) for each sample analysed plus a diode
array detector trace. Each spectrochromatogram
can typically hold 106 values (depending upon the
MS range and sampling rates). In their native form,
such data are extremely difficult to interpret. To
turn such data into information of chemical or bio-
logical interest, some sort of multivariate statistical
analysis must be employed.

Data processing for FT–IR spectral analysis

Raw data were exported to MATLAB as a matrix
object using the Opus software (Bruker Spec-
trospin). Data preprocessing was carried out on
autoscaling by normalization to unit variance (Win-
son et al., 1997).

Cluster analysis of FT–IR spectra

Principal components analysis

PCA (Causton, 1987; Jolliffe, 1986; and see below)
was performed on the original data set to give
a new reduced set of orthogonal variables called
principal components (PCs), the first few of which
typically account for >95% of the variance.

Discriminant function analysis

DFA is a supervised projection method (Manly,
1994); a priori information about sample group-
ing in the data set is used to produce measures of
within-group variance and between-group variance.
This information is then used to define discrimi-
nant functions that optimally separate the a priori
groups (in this case the groups are defined as repli-
cates). In this implementation, the first n PC scores
are used as the data source for DFA, where n is cho-
sen using cross-validation (Radovic et al., 2001).

ESI–MS preprocessing

In order to simplify any subsequent statistical anal-
ysis, two simple pre-processing algorithms were
applied to the ESI–MS spectrochromatograms.
First, each ESI–MS array was reduced into a single
‘aggregate’ MS vector by summing the ion counts

of a given m/z ratio over the total scan cycle. Each
MS vector was then ‘binned’ to unit m/z ratio (i.e.
ion counts of fractional m/z ratios were added to
the nearest integer m/z ). Thus, after this initial data
reduction an ESI–MS spectrochromatogram with
MS range 65–815 m/z will be reduced to a single
vector having 750 values. This is a highly efficient
strategy since, depending on the scan rate, the file
sizes are reduced from tens of megabytes to a few
kilobytes.

Multivariate analysis

Before employing any multivariate analysis each
MS vector is normalized to the total ion count
(which is given a value of 106). This is done so that
different spectra can be compared quantitatively.
Once a set of N spectra (with mass range p) is con-
catenated into a single matrix (N objects × p vari-
ables) each column of the data set can be option-
ally normalized to unit variance. This is done to
eliminate bias, in subsequent analysis, toward any
column that contains either large absolute values
or large variances (Martens and Næs, 1989). How-
ever, we note that normalization can sometimes be
more detrimental than helpful. If there are a large
number of redundant variables in the data, the noise
on such variables is amplified to the same impor-
tance as relevant variables. This can easily cloud
any underlying statistical trends.

In order to cluster the spectral data, principal
components analysis (PCA) was used. (Causton,
1987; Jolliffe, 1986). PCA involves projecting the
original X-matrix (N × p) onto a d-dimensional
subspace using a projection (or loading) matrix,
thus creating object coordinates (a score matrix)
in a new coordinate system. This is achieved by
the method known as singular value decomposition
(SVD) of X :

XN ×p = UN ×d�d×d LT
p×d = TN ×d LT

p×d

where U is the unweighted (normalized) score
matrix and T is the weighted (or biased) score
matrix. L is the loading matrix, where the columns
of L are known as eigenvectors or loading-PCs.
� is a diagonal matrix (i.e. all of the off-diagonal
elements are equal to zero) containing the square
roots of the first d eigenvalues of the co-variance
matrix (X T X ) where, d < N and d < p.

Copyright  2003 John Wiley & Sons, Ltd. Comp Funct Genom 2003; 4: 376–391.
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The principal components (PCs) can be consid-
ered as a basis set used to project the original
data matrix, X , onto the scores, T . In other words,
the new coordinates are linear combinations of the
original variables, e.g. the elements of the first prin-
cipal component can be represented as:

t11 = x11l11 + x12l21 + . . . + x1p lp1
t21 = x21l11 + x22l21 + . . . + x2p lp1

...

tn1 = xn1l11 + x12ln1 + . . . + xnplp1

The influence of each of the original variables
on the new PCs (i.e. the contents of the loading
matrix) is determined on the basis of the maximum
variance criterion. The first PC is considered to lie
in the direction describing maximum variance in
the original data. Each subsequent PC lies in an
orthogonal direction of maximum variance that has
not been considered by the former components. The
number of PCs computed for a given data set is
up to the analyst; however, usually as many PCs
are calculated as are needed to explain a pre-set
percentage of the total variance in the original data
(the total number of PCs possible is equal to the
number of original variables). It is also possible
to use PCA analysis on a subset of the variables
chosen via a genetic algorithm (GA) (Broadhurst
et al., 1997) and we have exploited such GA–PCA
analysis of the ESI–MS data here. In particularly
favourable cases the discrimination can be made
on the basis of just two or three variables, which
allows the display of data in a 2D or 3D plot of
the actual variables themselves (as opposed to the
PCs: Taylor et al., 1998). Finding these variables is
a combinatorial optimization problem (Cook et al.,
1998), as the number of pairs and triplets which
can be formed from 750 (i.e. the mass spectral)
variables is respectively 280 875 and 70 031 500;
hence the need for the GA.

Results and discussion

The synthesis, utilization and degradation of tryp-
tophan in E. coli has been studied extensively,
with regulation of its operon being effected by
both repression and attenuation (transcription ter-
mination) (Yanofsky, 2000; Yanofsky and Horn,
1994; Yanofsky et al., 1993, 1996). More recently
a selected set of mutants and wild-type W3110

(control) strains were used to study the changes
in expression profiles in response to altered trypto-
phan availability during early growth phase, and
15 genes organized in nine operons exhibited
changes. The set of experiments conducted here
for our study were different from those of Kho-
dursky et al. (2000b) as the cultures were grown for
24 h into stationary phase. The wild-type W3110
and mutant strains with trpR2 (repressor minus),
tnaA2 (tryptophanase minus), trpEA2 (tryptophan
operon minus) and trpA bradytroph were grown
under three different growth conditions: in min-
imal medium; in the presence of excess trypto-
phan; and tryptophan starvation induced by indole
acrylate (a tryptophan analogue). Indole acrylate
prevents tryptophan repression (Ilic et al., 1999;
Isaacs et al., 1994) by inhibiting the charging of
tRNAtrp by tryptophanyl-tRNA synthetase, which
in turn effects both repression and attenuation (tran-
scription termination) of the tryptophan operon. As
arginine biosynthetic genes are sensitive to tryp-
tophan starvation, very mild starvation conditions
were imposed and ideally a study would involve
the use of near-isogenic strains (Khodursky et al.,
2000b). Intracellular metabolite data are not dis-
played in this report as no meaningful clustering
of replicates was observed. However, preliminary
experimental results had indicated that differences
between strains could be detected using the filter-
sterilized media samples from cultures grown for
24 h, and therefore these samples were analysed
using FT–IR and mass spectrometry.

FT–IR analysis of E. coli tryptophan metabolism
mutants
FT–IR spectral analysis is used routinely in our
laboratory for high-throughput screening of a wide
range of microbes (Goodacre et al., 1998b; Oliver
et al., 1998) and their products (McGovern et al.,
1999, 2002; Shaw et al., 1999b; Winson et al.,
1997, 1998). The data produced by FT–IR spec-
troscopy are multidimensional and thus chemomet-
ric data analysis is required. Additionally, char-
acteristic vibrations can lead to the identification
of specific metabolites (e.g. Goodacre et al., 2000;
Johnson et al., 2000; McGovern et al., 2002).

The DFA biplots of FT–IR data from replicate
samples are shown in Figures 1, 2 and 3, with
representative FT–IR spectra being illustrated in
Figure 1A. Figure 1 shows E. coli W3110 wild-
type strain grown for 24 h in normal growth

Copyright  2003 John Wiley & Sons, Ltd. Comp Funct Genom 2003; 4: 376–391.
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medium without any additions (1), in medium
supplemented with 50 µg/ml tryptophan (2) or
indole acrylate at 10 µg/ml (3) and 15 µg/ml (4).
Clustering of the five replicates for each of the
samples is well defined. That the projected spectra
are recovered in the correct group clearly demon-
strates the high reproducibility of FT–IR here. The
samples in the presence of added tryptophan (2)
and/or indole acrylate (3 and 4) are clearly separat-
ing away from the normal minimal growth medium
(1) and tryptophan samples cluster away from the
indole acrylate samples.

Figure 2 shows the DFA biplot of selected
tryptophan mutant strains of E. coli grown in
minimal medium only. The replicates and pro-
jected data cluster together for each sample and
W3110 (1) clusters away from the other strains.
The tryptophanase-negative strains, tnaA2 (2) and
tnaA2 bradytroph (3) cluster together, whereas
trpR2 mutant (4) harbouring a repressor deletion
clusters away from the other strains. The DFA of
selected tryptophan mutant strains grown in the
presence of added tryptophan in Figure 3 show that
the tryptophan repressor, trpR2, deletion strain and
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Figure 2. DFA biplot of FT–IR data showing the relationship between culture media from wild-type W3110 (1) 15000
tnaA2 (2), 15681 tnaA2 trpA46PR9 bradytroph (3) and 15682 trpR2 (4) strains grown in minimal media only. Cross-validation
of the DFA model was performed, whereby the original data set was divided into two subsets, one of which was used to
train the model (closed circle) and the other subsequently used to validate it (open circle). This process serves to ensure
that the optimal number of principal components (PCs) is used to build the DFA model; in this case, 11 PCs were needed

Figure 1. (A) Illustrative FT–IR data from stationary phase supernatants of wild-type and mutants of E. coli, prepared as
described in the text. (B) DFA biplot of FT–IR data showing the relationship between 24 h culture media of wild-type
W3110 grown in minimal medium only (1), in minimal medium in the presence of 50 µg/ml tryptophan (2), and with 10 µg/ml
(3) and 15 µg/ml (4) indole acrylate (induces tryptophan starvation). Cross-validation of the DFA model was performed,
whereby the original data set was divided into two subsets, one of which was used to train the model (closed circle) and
the other subsequently used to validate it (open circle). This process serves to ensure that the optimal number of principal
components (PCs) are used to build the DFA model and that the clustering relationships in the data subsequently observed
are real, and not an artefact of, for example, over-fitting (i.e. to fit some of the random variation in the data as if it were
deterministic structure), which tends to arise when too many principal components are employed. In this case the optimal
number of PCs was 10
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Figure 3. DFA biplot of FT–IR data showing the relationship between culture media from wild-type W3110 (1), 15682
trpR2 (2), 15000 tnaA2 (3), 15001 trpR2 tnaA2 (4), 15602 �trpEA2 (5) and 15680 trpR2 �trpEA2(6) strains grown in minimal
media supplemented with 50 µg/ml tryptophan (which causes tryptophan repression). Cross-validation of the DFA model
was performed, whereby the original data set was divided into two subsets, one of which was used to train the model
(closed circles) and the other subsequently used to validate it (open circles). This process serves to ensure that the optimal
number of principal components (PCs) is used to build the DFA model; in this case, 18 PCs were needed

total tryptophan operon deletion (6) cluster away
from the other strains and the W3110 wild-type
but are closer to the strain with the operon dele-
tion only (5). Similarly, the strain with only trpR2
deletion (2) clusters away from all the other strains
but is closer to tnaA2 and trpA2 deletions (4) and
tnaA2 deletion (3) strains.

The distinct pattern of clustering of media
using FT–IR data analysis derived from a sin-
gle strain cultured under diverse growth condi-
tions clearly suggested that there are obvious
changes in the extracellular metabolite compo-
sition. This could be induced by growth media
supplemented with tryptophan or indole acrylate,
because tryptophan metabolism is tightly regulated
by the presence of tryptophan and indole acry-
late in the medium. These changes could also be
attributed to the uptake of nutrients from the growth
medium or secretion of intracellular metabolites
into the medium during growth. Using a subset
of strains carrying defined gene mutations, DFA

analysis shows distinct clusters, which are wholly
reproducible at the mutant level, as confirmed by
the projection of ‘unknown’ biological replicates
into PC-DFA space. Strains with single gene dele-
tions for tryptophanase and/or tryptophan repressor
proteins show DFA clusters displaced from those
of the strains carrying the polycistronic deletion
of tryptophan operon. Thus a marked effect on
tryptophan metabolism is generated by single or
multiple gene deletions. In conclusion, clustering
using FT–IR analysis can easily separate strains
according to their genotype and thus metabolomics
can provide a rapid high-content screen for genetic
lesions.

ESI–MS analysis of E. coli tryptophan
metabolism mutants

Additionally, these samples were also analysed
using direct injection mass spectrometry, which
has been used successfully to identify bacteria
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from crude cell-free extract preparations via a
complex milieu of large and small chemicals
(Magera et al., 2000; Morris and Cooper, 2000;
Tiller et al., 2000; Vaidyanathan et al., 2001, 2002;
van Eijk et al., 1999). Samples of 24 h culture
media for this study were also analysed using

ESI–MS in the positive ion mode, as we were
focusing on changes in tryptophan metabolites.
Mass spectrometric data are also high-dimensional
and must be preprocessed before chemometric
analysis. Representative ESI–MS spectra are given
in Figure 4A.
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Figure 4. (A) Illustrative mass spectral data from stationary phase supernatants of wild-type strains of E. coli
prepared as described in the text, (a) three separate experiments to show reproducibility and (b) in different media.
(B) GA–PCA-derived plot of ESI–MS data of culture media from wild-type W3110 grown in the presence of 50 µg/ml
tryptophan (1), 10 µg/ml (2) and 15 µg/ml (3) indole acrylate for 24 h. The MS data of wild-type W3110 grown in minimal
medium alone were subtracted as background masses. The axes represent the normalized ion counts of the stated
m/z variables
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Figure 4. Continued

The GA–PCA-derived plots of ESI–MS show-
ing selected m/z ions for filter-sterilized culture
media of wild-type W3110 and the other strains
grown for 24 h are shown in Figures 4, 5 and 6. All
plots show very close clustering of the six replicate
samples. In order to remove the effect of the wild-
type’s growth on the metabolic footprints, the MS
data of the wild-type, E. coli W3110, grown only
in minimal medium, were subtracted as a ‘back-
ground’ from all the sample data shown in these
figures.

The analysis showed that the samples of wild-
type grown in different media in Figure 4 could
be clearly discriminated using just two analyte
ions. The m/z 190 and 260, alone or together,
allowed clear separation of the wild-type grown
in supplemented medium with indole acrylate at
15 µg/ml (2), showing the greatest variance with
m/z 260 at around 1150 normalized ion counts
(NIC) and with m/z 190 at around 170 NIC.
In the presence of indole acrylate at the lower
concentration of 10 µg/ml (1), there were around
360 NIC of m/z 260 and around 75 NIC for m/z
of 190. By contrast, medium supplemented with

tryptophan (0) showed no significant discrimination
using either of these masses and clustered around
zero at the origin.

Figure 5 shows a 2D m/z plot of 260 vs. 381
derived from GA–PCA of the strains grown in
minimal media only. The trpR2 (7) strain clearly
separated from the others with m/z of 381 and
about 250 NIC and tnaA2 trpA46PR9 bradytroph
(6) separated with m/z 260 only with an NIC of
around 450. The tnaA2 (5) strain clustered around
zero, suggesting that it was similar (at least in these
two analytes) to the wild-type.

The GA–PCA-derived plot of the organisms
grown in the presence of 50 µg/ml tryptophan is
shown in Figure 6. This pseudo-3D plot of m/z
115 243 and 288 clearly distinguished the trpR2
(10), tnaA2 (11), trpR2 tnaA2 (12), �trpEA2 (13)
and trpR2 �trpEA2 (14) into five tight clusters.
The degradation of tryptophan leads to indole
(Goodacre and Kell, 1993; Prinsen et al., 1997),
pyruvate and ammonia, and the MS analysis of
the supernatant medium shows that a mass of 288
clearly discriminates trpR2 tnaA2 and �trpEA2
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Figure 5. GA–PCA-derived plot of ESI–MS data of culture media from 15000 tnaA2 (1), 15681 tnaA2 trpA46PR9 bradytroph
(2) and 15682 trpR2(3) strains grown in minimal media only for 24 h. The MS data of wild-type W3110 were subtracted as
background masses from the MS data of each of the mutant strains. The axes represent the normalized ion counts of the
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strains. Indole-3-glycerol phosphate is the penulti-
mate intermediate of tryptophan synthesis, and has
a mass of 287, which, when protonated in positive-
ion ESI–MS, gives it an m/z of 288 (Mohammed
et al., 1999). It is thus highly likely that the m/z
288 analyte is therefore indole-3-glycerol phos-
phate, and a functional genomics strategy with
access to a tandem instrument would establish this.

In conclusion, these rapid spectroscopic meth-
ods allowed us to discriminate these closely
related single-gene knockout strains from their
metabolic footprints alone. Thus, they can be
used to detect small phenotypic differences that
other conventional phenotyping and global profil-
ing approaches would miss, opening up the possi-
bility of gaining useful information from knockouts
with subtle phenotypes, especially in functional
genomics studies with large libraries of such gene
knockouts. The footprinting approach, which does
not rely upon the identification of any peaks, can
be used without prior knowledge of the likely func-
tion of the genes of interest, and can supply data
that could indicate potential functions for genes.
The FT–IR is rapid but is chemically unselective,
and is better for a very rapid ‘fingerprinting’ type
of study in which it is not of great interest to iden-
tify the metabolites of interest (Fiehn, 2001). By
contrast, the ESI–MS is slightly slower but can
give an indication of the metabolites contributing to
the differences between the strains. More definitive
identification would require other methods, such as
tandem mass spectrometry. Nevertheless, as rapid
and reagentless approaches, FT–IR and ESI–MS
of metabolic footprints are both much quicker and
cheaper than are transcriptomics and proteomics.
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