103 research outputs found

    An updated checklist of Chondrichthyes from the southeast Pacific off Peru

    Get PDF
    7 páginas.-- This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International LicenseThe first updated and comprehensive checklist of Chondrichthyes from the southeast Pacific off Peru, based on the revision of scientific literature, is presented. The group of Chondrichthyes in the Peruvian coast is composed of 115 species that include 66 species of sharks, 43 species of batoids, and six species of chimaeras. We present nine new records and one recent discovery obtained from secondary sources. For some species, we also compiled the extensions in the geographic distributionsPeer reviewe

    Compound-specific stable isotope analysis of amino acids in pelagic shark vertebrae reveals baseline, trophic, and physiological effects on bulk protein isotope records

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Magozzi, S., Thorrold, S. R., Houghton, L., Bendall, V. A., Hetherington, S., Mucientes, G., Natanson, L. J., Queiroz, N., Santos, M. N., & Trueman, C. N. Compound-specific stable isotope analysis of amino acids in pelagic shark vertebrae reveals baseline, trophic, and physiological effects on bulk protein isotope records. Frontiers in Marine Science, 8, (2021): 673016, https://doi.org/10.3389/fmars.2021.673016.Variations in stable carbon and nitrogen isotope compositions in incremental tissues of pelagic sharks can be used to infer aspects of their spatial and trophic ecology across life-histories. Interpretations from bulk tissue isotopic compositions are complicated, however, because multiple processes influence these values, including variations in primary producer isotope ratios and consumer diets and physiological processing of metabolites. Here we challenge inferences about shark tropho-spatial ecology drawn from bulk tissue isotope data using data for amino acids. Stable isotope compositions of individual amino acids can partition the isotopic variance in bulk tissue into components associated with primary production on the one hand, and diet and physiology on the other. The carbon framework of essential amino acids (EAAs) can be synthesised de novo only by plants, fungi and bacteria and must be acquired by consumers through the diet. Consequently, the carbon isotopic composition of EAAs in consumers reflects that of primary producers in the location of feeding, whereas that of non-essential amino acids (non-EAAs) is additionally influenced by trophic fractionation and isotope dynamics of metabolic processing. We determined isotope chronologies from vertebrae of individual blue sharks and porbeagles from the North Atlantic. We measured carbon and nitrogen isotope compositions in bulk collagen and carbon isotope compositions of amino acids. Despite variability among individuals, common ontogenetic patterns in bulk isotope compositions were seen in both species. However, while life-history movement inferences from bulk analyses for blue sharks were supported by carbon isotope data from essential amino acids, inferences for porbeagles were not, implying that the observed trends in bulk protein isotope compositions in porbeagles have a trophic or physiological explanation, or are suprious effects. We explored variations in carbon isotope compositions of non-essential amino acids, searching for systematic variations that might imply ontogenetic changes in physiological processing, but patterns were highly variable and did not explain variance in bulk protein δ13C values. Isotopic effects associated with metabolite processing may overwhelm spatial influences that are weak or inconsistently developed in bulk tissue isotope values, but interpreting mechanisms underpinning isotopic variation in patterns in non-essential amino acids remains challenging.The internship of SM at the Woods Hole Oceanographic Institution was funded by the School of Ocean and Earth Science at University of Southampton. Stable isotope analyses were paid by CT and ST research budgets and SM Ph.D. and placement funding

    Drivers of the spatial behaviour of the threatened thornback skate (Raja clavata)

    Get PDF
    Fish movements are fundamental to their ecology and survival. Understanding the causes and consequences of the spatial behaviour of fish is of high relevance as it provides critical knowledge for conservation purposes. Skate (Rajidae) populations face an unprecedented global decline due to overfishing. In this study, we used acoustic telemetry to track the movements of nine individuals of the near threatened thornback skate (Raja clavata) around the Cíes Islands, a small marine protected area in the northwest of the Iberian Peninsula. Our results demonstrate the significant impacts of biotic and abiotic drivers on the spatial behaviour of R. clavata. Overall residency inside the study array was low (0.073), differed between sexes (higher for females) and over the course of the year (peaking in summer). The analysis of the direction of the excursions performed by R. clavata individuals revealed high consistency in the exit and entry areas and a strong connectivity with inshore waters connecting with the Ría de Vigo, as compared with offshore waters connecting with the open ocean. Finally, the activity space of R. clavata also varied over the time of the year with a peak in summer. This study provides an important baseline information for understanding the spatial behaviour of R. clavata that can serve as a starting point for planning future conservation actions or studies

    World without borders-genetic population structure of a highly migratory marine predator, the blue shark (Prionace glauca)

    Get PDF
    Highly migratory, cosmopolitan oceanic sharks often exhibit complex movement patterns influenced by ontogeny, reproduction, and feeding. These elusive species are particularly challenging to population genetic studies, as representative samples suitable for inferring genetic structure are difficult to obtain. Our study provides insights into the genetic population structure one of the most abundant and wide-ranging oceanic shark species, the blue shark Prionace glauca, by sampling the least mobile component of the populations, i.e., young-of-year and small juveniles (year; N = 348 individuals), at three reported nursery areas, namely, western Iberia, Azores, and South Africa. Samples were collected in two different time periods (2002-2008 and 2012-2015) and were screened at 12 nuclear microsatellites and at a 899-bp fragment of the mitochondrial control region. Our results show temporally stable genetic homogeneity among the three Atlantic nurseries at both nuclear and mitochondrial markers, suggesting basin-wide panmixia. In addition, comparison of mtDNA CR sequences from Atlantic and Indo-Pacific locations also indicated genetic homogeneity and unrestricted female-mediated gene flow between ocean basins. These results are discussed in light of the species\u27 life history and ecology, but suggest that blue shark populations may be connected by gene flow at the global scale. The implications of the present findings to the management of this important fisheries resource are also discussed

    Repeated, Long-Distance Migrations by a Philopatric Predator Targeting Highly Contrasting Ecosystems

    Get PDF
    Long-distance movements of animals are an important driver of population spatial dynamics and determine the extent of overlap with area-focused human activities, such as fishing. Despite global concerns of declining shark populations, a major limitation in assessments of population trends or spatial management options is the lack of information on their long-term migratory behaviour. For a large marine predator, the tiger shark Galeocerdo cuvier, we show from individuals satellite-tracked for multiple years (up to 1101 days) that adult males undertake annually repeated, round-trip migrations of over 7,500 km in the northwest Atlantic. Notably, these migrations occurred between the highly disparate ecosystems of Caribbean coral reef regions in winter and high latitude oceanic areas in summer, with strong, repeated philopatry to specific overwintering insular habitat. Partial migration also occurred, with smaller, immature individuals displaying reduced migration propensity. Foraging may be a putative motivation for these oceanic migrations, with summer behaviour showing higher path tortuosity at the oceanic range extremes. The predictable migratory patterns and use of highly divergent ecosystems shown by male tiger sharks appear broadly similar to migrations seen in birds, reptiles and mammals, and highlight opportunities for dynamic spatial management and conservation measures of highly mobile sharks

    Population Connectivity of the Highly Migratory Shortfin Mako (Isurus oxyrinchus Rafinesque 1810) and Implications for Management in the Southern Hemisphere

    Get PDF
    Copyright © 2018 Corrigan, Lowther, Beheregaray, Bruce, Cliff, Duffy, Foulis, Francis, Goldsworthy, Hyde, Jabado, Kacev, Marshall, Mucientes, Naylor, Pepperell, Queiroz, White, Wintner and Rogers. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.In this paper we combine analyses of satellite telemetry and molecular data to investigate spatial connectivity and genetic structure among populations of shortfin mako (Isurus oxyrinchus) in and around Australian waters, where this species is taken in recreational and commercial fisheries. Mitochondrial DNA data suggest matrilineal substructure across hemispheres, while nuclear DNA data indicate shortfin mako may constitute a globally panmictic population. There was generally high genetic connectivity within Australian waters. Assessing genetic connectivity across the Indian Ocean basin, as well as the extent that shortfin mako exhibit sex biases in dispersal patterns would benefit from future improved sampling of adult size classes, particularly of individuals from the eastern Indian Ocean. Telemetry data indicated that Australasian mako are indeed highly migratory and frequently make long-distance movements. However, individuals also exhibit fidelity to relatively small geographic areas for extended periods. Together these patterns suggest that shortfin mako populations may be genetically homogenous across large geographical areas as a consequence of few reproductively active migrants, although spatial partitioning exists. Given that connectivity appears to occur at different scales, management at both the national and regional levels seems most appropriate

    Global Spatial Risk Assessment of Sharks Under the Footprint of Fisheries

    Get PDF
    Effective ocean management and conservation of highly migratory species depends on resolving overlap between animal movements and distributions and fishing effort. Yet, this information is lacking at a global scale. Here we show, using a big-data approach combining satellite-tracked movements of pelagic sharks and global fishing fleets, that 24% of the mean monthly space used by sharks falls under the footprint of pelagic longline fisheries. Space use hotspots of commercially valuable sharks and of internationally protected species had the highest overlap with longlines (up to 76% and 64%, respectively) and were also associated with significant increases in fishing effort. We conclude that pelagic sharks have limited spatial refuge from current levels of high-seas fishing effort. Results demonstrate an urgent need for conservation and management measures at high-seas shark hotspots and highlight the potential of simultaneous satellite surveillance of megafauna and fishers as a tool for near-real time, dynamic management
    corecore