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Abstract – Fish movements are fundamental to their ecology and survival. Understanding the causes and
consequences of the spatial behaviour of fish is of high relevance as it provides critical knowledge for
conservation purposes. Skate (Rajidae) populations face an unprecedented global decline due to overfishing.
In this study, we used acoustic telemetry to track the movements of nine individuals of the near threatened
thornback skate (Raja clavata) around the Cíes Islands, a small marine protected area in the northwest of the
Iberian Peninsula. Our results demonstrate the significant impacts of biotic and abiotic drivers on the spatial
behaviour of R. clavata. Overall residency inside the study array was low (0.073), differed between sexes
(higher for females) and over the course of the year (peaking in summer). The analysis of the direction of the
excursions performed by R. clavata individuals revealed high consistency in the exit and entry areas and a
strong connectivity with inshore waters connecting with the Ría de Vigo, as compared with offshore waters
connecting with the open ocean. Finally, the activity space of R. clavata also varied over the time of the year
with a peak in summer. This study provides an important baseline information for understanding the spatial
behaviour of R. clavata that can serve as a starting point for planning future conservation actions or studies.
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1 Introduction

Animal movement is fundamental to life and shapes many
ecological and evolutionary processes (Nathan et al., 2008;
Cooke et al., 2022). For instance, spatial behaviour affects
population dynamics, connectivity, exposure to threats and the
ability to cope with environmental changes (Morales et al.,
2010). At the same time, the movement of organisms is
influenced by a myriad of biotic and abiotic factors at multiple
temporal and spatial scales (Lédée 2015; Cooke et al., 2022).
Understanding the causes and consequences of movement is
therefore of high interest in ecological and evolutionary
research (Shaw, 2020).

From a practical standpoint, a comprehensive understand-
ing of the spatial ecology of marine organisms is essential to
assess and inform marine conservation policies and manage-
ment plans (Crossin et al., 2017; Hays et al., 2019). Combining
information on the movement ecology of highly migratory
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species with the spatial distribution of fishing efforts has
revealed a high and concerning overlap between fish
abundance and fishing pressure (Queiroz et al., 2019). A
growing number of marine protected areas (MPAs) are now
being designed and evaluated based on the extent of species
home ranges and habitat selection (MacKeracher et al., 2018;
Gilmour et al., 2022). Spatial ecology studies have revealed
essential habitats for marine animals such as foraging grounds
(Warwick-Evans et al., 2018) or spawning and nursing areas
(Hays et al., 2019). Finally, innovative research using
movement monitoring succeeded in estimating key demo-
graphic parameters such as mortality rates for neonates and
juveniles (Heupel and Simpfendorfer, 2002) as well as survival
rates from fisheries discard (Morfin et al., 2019; Alonso-
Fernández et al., 2022).

Over one-third of species of the class Chondrichthyes are
threatened by the loss and degradation of habitat, climate
change, pollution and overfishing (Dulvy et al., 2021).
Skate (Rajidae) populations have been experiencing a severe
decline worldwide as a result of habitat loss and overexploita-
tion (McPhie and Campana, 2009, Simpson et al., 2020,
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any medium, provided the original work is properly cited.
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Dulvy et al., 2021). Most skate species have low population
growth due to their slow development rates and late sexual
maturity (Licandeo et al., 2006; Pardo et al., 2016).
Consequently, the majority of skate species are unable to
withstand high levels of fishing pressure (McPhie and
Campana, 2009; Dulvy et al., 2014) and are considered
among the most vulnerable groups of fish (Dulvy et al., 2000).
Current population declines of skates have resulted in the
inclusion of many Rajidae species on the IUCN (International
Union for the Conservation of Nature) Red List. As of today,
158 species of Rajidae are present on the IUCN Red List with
36% of species (ray and skates) classified as threatened
(n= 220 of 611 species) (Dulvy et al., 2021; IUCN, 2022).
Despite a few studies focused on skate ecology (Neat et al.,
2014; Sousa et al., 2019; Simpson et al., 2020), many aspects
of their life cycle still remains unknown. In fact, 13.3% of all
skate species present on the IUCN Red List are still considered
“data deficient” (IUCN, 2022) and the populations of skates in
Europe are considered data-limited stocks without analytical
stock assessments (ICES, 2022). Filling these ecological
knowledge gaps is a pressing need if we want to counteract the
global diversity loss (Joppa et al., 2016).

Technological advancements have made it possible to track
marine animals in conditions that would otherwise be
impossible to achieve, thus fostering the rapid development
of the field of movement ecology (Lennox et al., 2017;
Lowerre-Barbieri et al., 2019). In systems ranging from lakes
and rivers to the open ocean, acoustic telemetry is the most
used method to track submerged aquatic organisms (Hussey
et al., 2015). The use of underwater acoustic telemetry allows
for an in-depth understanding of fish movement ecology, such
as home range (Leeb et al., 2021), activity (Bohaboy et al.,
2022) as well as diel and seasonal differences in movement
patterns during the year (Williams-Grove and Szedlmayer,
2016). This represents a particularly suitable technique to meet
the actions of the “Sustainable Development Goal 14” of the
United Nations (Alós et al., 2022). In a context of ever-
growing anthropogenic disturbances such as habitat degrada-
tion, migration barriers and climate change, furthering our
understanding of the drivers of animal behaviour is of the
utmost importance to increase the effectiveness of conserva-
tion efforts (Hays et al., 2019; Lowerre-Barbieri et al., 2019).

The thornback skate, Raja clavata (Linnaeus 1758), is
amongst the most common and widespread skates in the
northeast Atlantic and Mediterranean Sea (Ellis, 2016). This
bottom-dwelling and coastal species can be found from the
South of the Arctic Circle (Iceland, Norway) to the east
Atlantic coast of south Africa (Stehmann, 1995). Like most
skates, the thornback skate spends the majority of its time
buried in fine sediment (Albert et al., 2022). Often occurring at
depths ranging from 0 to 60 meters, thornback skates can
inhabit areas as deep as the upper limit of the continental slope
(300m) (Whitehead et al., 1986; Last et al., 2016; Trenkel
et al., 2022). Characterised as an opportunistic, mobile and
active predator, thornback skates feed on a wide variety of prey
(mainly invertebrates and some fish), thus granting it a wide
foraging area (Ellis et al., 1996; Farias et al., 2006). As with all
Rajidae species, female thornback skates spawn egg capsules
which they bury or attach to the substrate (Maia et al., 2015).
Classified globally as “Near Threatened” by the IUCN Red
List (Ellis, 2016), the thornback skate is among the most
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frequently captured skates by commercial fisheries in
northwest Europe (Santos et al., 2021). In 2019, the global
catch of thornback skate reached 6,874 tonnes, most of them
being captured as bycatch of trawls and gillnets (FAO, 2021).
The thornback skate is a common species in European
multispecies and multi-gear fisheries, including the small-scale
fishing sector (Bañón Díaz et al., 2008; Figueiredo et al.,
2020), in partially protected areas (Di Lorenzo et al., 2022).
Thornback skates rarely escape trawl nets because of their
large size and thorns; this, coupled with the slow growth rate
and low fertility of skates, makes overfishing a great threat to
their populations (Ellis, 2016). It is important to note that, the
conservation status of R. clavata appears to show signs of
improvement in recent years, with increased biomass and
indications of low exploitation levels in the northeast Atlantic
(ICES, 2022). However, variations and uncertainties in
different assessments, emphasize the need for continued
monitoring and management measures to ensure the long-term
sustainability of the species. Although the general latitudinal
and bathymetric distribution of the species is understood, there
have been virtually no studies assessing the fine-scale
behaviour of the species in which may however be relevant
for understanding the applicability of conservation measures
such as marine protected areas. In this study, we filled this
knowledge gap by using fine-scale positioning based on
acoustic telemetry to track the spatial ecology of thornback
skates in the Cíes Islands, a small MPA in the northwest of the
Iberian Peninsula. Our objectives were to (1) identify the
residence patterns in the study area; (2) assess the timing,
duration and direction of the excursions out of the study area;
(3) quantify the temporal variation in space use. This study
allows inferences about thornback skates in the Cíes
archipelago that were previously not possible.

2 Methods

2.1 Study array

This study was carried out in the Cíes islands, at the mouth
of the Ría de Vigo (Galicia, northwest Spain), between October
2020 and June 2022. The Cíes islands are part of a partially
protected area called the Parque Nacional Marítimo-Terrestre
das Illas Atlánticas de Galicia (PNMTIAG). This archipelago
is made up of several islands and islets that together cover an
area of 31 km2 (Figs. 1a–c). Inside the PNMTIAG recreational
fishing is prohibited and different uses are regulated (Xunta de
Galicia, Conselleira de Medio Ambiente, Territorio y
Vivienda, 27/12/2018). Waters surrounding the Cíes islands
are subject to upwelling events, rendering them particularly
productive and therefore valued as important fishing grounds
by the small-scale local fishers (Arístegui et al., 2004; Broullón
et al., 2023).

An array of 22 ©Innovasea (formerly Vemco) VR2W
acoustic omni-directional receivers was deployed in the study
area. Receivers were mounted at the top of auger anchors
(140 cm high and screwed 60 cm deep into the sandy
substrate), at depths ranging from 3.3 to 13.1m (Villegas-
Ríos et al., 2013) (Fig. S1). Two ©Innovasea reference
transmitters (V13 and V16) were placed at fixed positions
within the receiver array to assess potential environmental
effects on the detection patterns and the error associated to
f 11



Fig. 1. (a) Location of the study array in the Iberian Peninsula (red square). (b) Position of the study area (red shaded area) within the national
park (green polygons). (c) Map of the study area showing the location of the ©Innovasea acoustic receivers (coloured dots), reference tags (red
triangles) with the temperature data logger (green circles and triangles). (d) Detailed map of the study area displaying ©Innovasea acoustic
receivers divided into four sectors, reference tags and bathymetry.
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skate positions (Payne et al., 2010). Following range tests
(Leeb et al., 2021), the distance between stations was set at
∼150m to ensure adequate coverage and overlap between
receiver’s detection ranges. Assuming an average detection
range of ≃150m (corresponding to 50% of the proportion
of the detections received during the range test
(Leeb et al., 2021)) the area covered by the array would
be 0.58 km2.
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2.2 Skate tagging

All thornback skates (n= 14) were caught by a small
commercial boat using “palangrillo” (Galician local name for
small bottom long-lines) baited with pilchard or squid near or
within the acoustic array. The fishing gear used in the study
comprised sets of four and six pieces containing approximately
160 hooks per piece. Longline sets covered an average distance
f 11
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of 2.26 ± 0.88 km and the soak time of the experimental fishing
trips varied between 26min and 4 h and 15min. Eleven
thornback skates were externally tagged (anchored with
monofilament) in the pectoral fin (Fig. S1) with ©Innovasea
V13P-1x (lifetime: 855 days; signal transmission delay:
80–160 s) and three with ©Innovasea V9AP-2x (lifetime:
453 days; delay: 80–160 s) transmitters equipped with pressure
sensors. Fish were tagged on two dates: 08th of October and
19th of November 2020. Each tagged skate was sexed and the
disc length (DL) measured to the nearest cm; individuals
were subsequently returned to the sea as quickly as possible
(<5min). External T-bar tags (©Floy Tag) were attached to the
pectoral fin of the individuals to prevent possible repeated
tagging in subsequent samplings and to enable fishers and
divers to report their recaptures (Fig. S1).

A dead thorback skate was equipped with an acoustic
transmitter (©Innovasea V13P) and released inside the
telemetry array to determine the effects of currents, waves,
or scavengers on the movement of a dead individual. As a
result, we were able to identify a “dead” pattern, which could
be used to assess whether a tagged skate had died inside the
array (Villegas-Ríos et al., 2020; Alonso-Fernández et al.,
2022) (Fig. S2). This is important to make sure that the
behavioural variables are only estimated when the fish are alive
(Villegas-Ríos et al., 2020).

This study complied with animal welfare regulations of the
regional government (Xunta de Galicia) starting on the 14th of
November 2019. It follows the Experimental Animal Project
Authorization: ES360570202001/19/FUN01/BIOL AN.08/
AAF01.

2.3 Data treatment and analysis

Detection data were offloaded from acoustic receivers
every 6 months starting in September 2020 until June 2022.
The data was stripped from single detections occurring within
24 hours at receivers as they were considered false detections
(Meyer et al., 2007). The fate and “fate date” for each tagged
skate were assigned by examining plots of position and depth
over the study time based on Centres of Activity (COAs)
(Villegas-Ríos et al., 2020; Alonso-Fernández et al., 2022)
(Fig. S3). Behavioural analyses only included skates that were
alive and within the acoustic array for at least three days post-
release to exclude individuals which died after release.
Moreover, any detections post the assigned fate date were
filtered from the analysis (Fig. S3).

2.4 Residency

The residence index (RI) for each skate was computed as
follows:

RI ¼ DD

TD
;

where DD corresponds to the number of days an individual
was detected and TD to the total number of days between the
tagging date and the end of the study. RI range of values goes
from 0 (never detected in the array) to 1 (continuous residency
in the array) (Papastamatiou et al., 2010; Espinoza et al., 2011).
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2.5 Characterizing excursions

To determine possible preferred routes used for entering
and exiting the study area, we divided the array into four
sectors (Fig. 1d). Excursions out of the study area were
identified as instances when an individual was absent for more
than 24 h. For all excursions, we retained: (i) the sector where
the last detection of the skate leaving the array was recorded,
(ii) the sector which recorded the first detection of the skate
returning into the array and (iii) the duration of the excursion.
We defined four sectors mirroring the four cardinal points:
‘north’ � suggesting a movement towards the northern side of
the archipelago; ‘east’ � suggesting a movement towards the
inner part of the Ría de Vigo; ‘south’�which suggests that the
skate was heading towards the southernmost island; and ‘west’
� which is linked with the channel that separates the two main
islands and ultimately leads to the continental shelf.
Excursions were classified based on their duration as: (1)
‘short-term’ � when the time spent outside the study area was
less than seven days; (2) ‘medium-term’ � when it was
comprised between seven days and one month; and (3) ‘long-
term’� when it was longer than one month. Lastly, the degree
of consistency with which fish used different sectors to exit and
re-enter the study area was examined by calculating the
number of excursions that had the same exit and entry sector.

2.6 Activity space

Activity space was defined as the 95% Kernel Utilization
Distribution (KUDs) of each skate (i.e. a central area or volume
within which an animal is 95% likely to be found) (Powell,
2000). KUDs were computed on a weekly basis using
“adehabitatHR” packages in R (Calenge, 2006). We did not
estimate KUDs for weeks with positions in less than four days
(consecutive or non-consecutive) to eliminate bias from
activity space computation based on weeks with few detection
days (Leeb et al., 2021).

2.7 Environmental variables

Oceanographic conditions within and near the acoustic
telemetry arrays were monitored throughout the study period.
Sea levels were acquired from the tide gauge “Vigo 2” located
at 42°1402400N; 8°4304800W (Prontuario instalaciones, 2022).
Sea bottom temperature (‘Temp’) was recorded every half hour
using a combination of data loggers (©Star: ODDI DSTcenti-T)
and Thelma acoustic receivers only used as temperature loggers
and covering different depths and areas of the study array
(Fig. 1d).

2.8 Statistical analysis

Along with observed environmental conditions, the day of
the year (DOY: 1-366) was included in the models to explain
seasonal effects. Similarly, week of the year (WOY: 1-53) was
added to describe the yearly cycles in skate behaviour. Day and
night times based on sunrise and sunset at 42° 120 47.663400N;
�8° 5403.952200Wwere calculated using the “suncalc” package
in R (Thieurmel and Elmarhraoui, 2022).
f 11



Fig. 2. Abacus plot showing the daily presence of thornback skate (Raja clavata) in the study area. Days when an individual was present, are
coloured in beige. The two black lozenges at the start and end of each time series represent respectively the tagging and end date of the study.
Daily presence is displayed for the reference tag (red) and the dead skate (blue). Green lozenges represent death events: DESTAC-SPP-20-03 &
DESTAC-SPP-20-04 on 19/10/2020.
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We used Generalized Additive Mixed-effects Models
(GAMMs) implemented in the R package “mgcv” to assess the
relationship between independent variables and skate proba-
bility of presence as well as activity space (Wood et al., 2014,
2017; Li and Wood, 2019). In all models, individuals were
handled as a random effect (via random intercept), an
autoregressive term of order one (corAR1) was used since
observations were made throughout time in a sequential
manner (Dormann, 2007). The addition of the autoregressive
term when describing weekly integrated activity space was
based on a previous study demonstrating that employing
weekly replicates of behavior yielded less biased repeatability
estimates (Villegas-Ríos et al., 2017). Common fixed effects
in the model included sex (male, female) and disc length
(cm). Maximum likelihood criteria were used to fit GAMMs
and a backward (decreasing number of variables) selection
method was used to construct them. Non-parametric
smoothing functions s were fitted with four knots to model
the non-linear effect of sea bottom temperature on a day t
(‘Tempt’) on the residency. Day of the year (‘DOY’) and
week of the year (‘WOY’) were fitted as non-parametric
smoothing functions s with four knots and cyclic cubic
splines.

3 Results

A total of 381,884 detections (29,344 post filtration) were
retrieved from the receiver array at the end of the study period,
on the 14th of June 2022. After filtering out the detections of
two dead individuals that remained dead inside the array
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during most of the study (DESTAC-SPP-20-03 and DESTAC-
SPP-20-04), we retained 29,344 detections for analysis. The
number of tracking days varied greatly among skates ranging
from just 3 to 160 days (Tabs. S1 and S2).

3.1 Residency

Of the 14 tagged individuals (mean disc length = 34.79 cm,
range: 22–49 cm), only nine were present in the array for three
or more days after the tagging date and thus included in the
analyses (Tab. S1). Amongst those nine skates, two individuals
were classified as dead during the study period (Fig. 2). The
residence index was low, ranging from 0.005 to 0.260 (mean
RI = 0.073) (Tab. S2).

The probability of presence of R. clavata in the study area
was influenced by both biotic and abiotic factors. R. clavata
residency in the array followed a bell curve (Fig. 3a), reaching
its maximum in summer (DOY= 159). Females had a higher
probability of presence in the study area compared to males
(Tab. 1; Fig. 3b). Finally, there was some support (Tab. 1) for a
higher probability of presence at temperatures around 15 °C
with a small decrease towards higher and lower temperatures
(Fig. 3c).

3.2 Excursions

Over the course of the study, we identified 70 excursions.
Among them, six were long-term (average duration = 175 ± 54
days), 12 were medium term (average duration = 15 ± 7 days)
and 52 were short-term (average duration = 3 ± 2 days). The
f 11



Fig. 3. Predicted probability of the presence of Raja clavata in the study area as a function of day of the year (a), sex (b) and sea bottom
temperature (c). Black bars (b) and grey shaded areas (a, c) represent the 95% confidence interval. Black dots correspond to the raw data of
probability of presence. Values used for predictions: sex = female, sea bottom temperature = 14 °C, day of the year = 260.

Table 1. Summary of the optimal generalized additive mixed-effects models investigating the (i) probability of presence and (ii) activity space
of Raja clavata in the study area†.

(i) Probability of Presence

Parametric coefficients Estimates Std. Error t value Pr(>|t|)

Intercept –3.0617 0.5372 –5.699 <0.001
Sex(male) –2.2678 0.8205 –2.764 0.006
Smooth Terms Edf Ref.df F P value
s(Temp) 2.857 2.857 10.39 <0.001
s(DOY) 1.980 2.000 99.42 <0.001
R-sq. (adj) = 0.132

(ii) Activity space

Parametric coefficients Estimates Std. Error t value Pr(>|t|)

Intercept 12.1509 0.1203 101 <0.001
Smooth terms Edf Ref.df F P value
s(WOY) 1.71 2.00 7.323 <0.001
R-sq. (adj) = 0.106
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number of excursions per individual ranged from 0 to 26, with a
mean of 7.8 excursions per individual (Tab. S2). In the 615 days
of the study, individuals exited and re-entered the study area
55 times in the direction of the Ría de Vigo (East). Interestingly,
from the four sectors composing the array, the sector connecting
to theWest (continental shelf) was never used.High consistency
wasobserved in the sector used to exit and re-enter the study area
by R. clavata during excursions, with 82% (43 out of 52) of the
short terms excursions and66% (8out of 12) of themedium term
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excursions having the same exit and re-entry sector. Long-term
excursions had less consistency with only 50% (3 out of 6)
having the same exit and re-entry sector.

3.3 Activity space

R. clavata activity space in the study area ranged from 0.12
to 0.50 km2 (mean AS= 0.27 ± 0.13 km2) (Tab. S2, Fig. S4).
Observation of raw data based on COAs indicated a sexual
f 11



Fig. 4. Overview of all sectors, showing the number of exits (a) and entry (b) routes taken during the study period by Raja clavata.
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variation in activity space with females displaying a higher
occupied space (0.33 ± 0.11 km2) than males (0.21 ± 0.08 km2)
(Tab. S2). While some individuals may have utilized the entire
depth range of the study array, it appeared that R. clavata had a
preference for the deeper waters within the array (Fig. S4).
The activity space of R. clavata had no significant diel
variation, with daytime activity space (0.25 ± 0.11 km2)
mirroring the activity space at night (0.26 ± 0.13 km2). Finally,
results of the GAMM (Tab. 1) confirmed seasonal variation of
the activity space of R. clavata, reaching its maximum in
summer (0.25 ± 0.03 km2 atWOY=29) (Fig. 5). It is important
to note that, having very few individuals present in the array
in summer, this estimate is likely influenced by this small
sample size.

4 Discussion

The analysis of data retrieved from nine acoustically
tagged R. clavata showed significant variations in their spatial
behaviour at different timescales, influenced by both biotic and
abiotic factors. On average, the probability of presence in the
study area for R. clavata was very low (mean RI = 0.073). The
likelihood of presence was mostly affected by sex, with
females being more likely to be present than males. The
excursion patterns indicated a strong connection to inshore
waters, specifically the Ría de Vigo. Our results showed a
major increase in activity space in summer. This study
provides an important baseline for understanding and linking
the ecology of the vulnerable thornback skate with possible
conservation actions.

The first key result of our study is that R. clavata spent very
little time inside the study area. Most of the individuals left
after five days or less and were not detected again. This alone
suggests that small MPAs of just a few square kilometres are
probably not enough to protect this species over long periods
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of time. It is important to point out the pronounced difference
in residency between Scyliorhinus canicula RI (0.27) and
R. clavata RI (0.073) in the same study area (Papadopoulo
et al., 2023). An alternative explanation for the limited use of
the study area by R. clavata may indicate a higher level of
residence in a nearby area or to sporadic dispersal movements.
For the few individuals that were detected for more than
30 days (n= 4), a seasonal pattern of presence was observed,
with a higher presence in summer. In fact, two individuals were
detected in two consecutive spring-summer seasons after being
absent in winter. Although based on a small number of
individuals, this may suggest a seasonal use of the study area
for at least part of the population, matching the behaviour
observed in another skate species in the same study area (Leeb
et al., 2021). The reason why individuals of these species spend
more time in the study area in spring and summer remains
unknown, but it might be related to their life cycle (Chevolot,
2006). Prior studies have indicated that skates may exhibit
seasonal movements, with individuals moving from deeper
waters during winter, to shallower waters during spring and
summer, where they are believed to mate and spawn (Walker
et al., 1997; Hunter et al., 2005a). Although no egg cases of
R. clavata have been reported inside the array, these seasonal
patterns in skate movement could account for their migration
in and out of the study area.

The second main result is the observation that space use
varied seasonally. R. clavata had the highest activity space
inside the array in summer and the smallest in spring. Seasonal
variation in the home range of R. clavata has been observed in
different studies, however, they focused on the variation in its
vertical range (Hunter et al., 2005a, 2005b; Cabral, 2014). In
these studies, the breeding cycle appeared to be the main driver
of variation in R. clavata vertical range, thus affecting its home
range (Hunter et al., 2005a, 2005b). Within the study area,
another species of skate (Raja undulata) displayed a seasonal
f 11



Fig. 5. Predicted activity space of Raja clavata in the study area as a function of the week of the year. Grey-shaded areas represent the 95%
confidence interval. Black dots correspond to the raw data of activity space. Values used for predictions: sex = female, sea bottom
temperature = 14 °C.
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variation in activity space, although with a peak in spring and a
steady decrease towards winter (Leeb et al., 2021). The main
drivers of this variation were also associated with breeding
cycles with R. undulata using sheltered, shallow habitats as
nursery grounds. The ultimate drivers of variation of activity
space in R. clavata could be related to biological needs and
cycles (e.g. feeding or mating) (Hunter et al., 2005b) but
compelling evidence is not available. It is worth mentioning
that this study did not investigate any evidence of sex/size-
related segregation patterns that could account for the observed
variation in space use. Therefore, any association between
seasonal variation in space use and the reproductive cycle of
R. clavata should be approached with caution.

The third key result is about the patterns of excursions from
and to the study area. The telemetry data revealed the many
instances (70) during when R. clavata individuals travelled
outside the array to later return. These observations combined
with the overall low residency index suggest that R. clavata
true home range extends far beyond the limit of the study area
and is in agreement with previous studies conducted on two
different elasmobranchs species at this site (Leeb et al., 2021;
Papadopoulo et al., 2023). A previous mark-recapture study
found that most adult R. clavata were recaptured within 37 km
of the release site (Chevolot et al., 2006). Interestingly,
R. clavata demonstrated high consistency in the sector taken to
exit and re-enter the array with the majority of excursions
heading to the Ría de Vigo. This result mirrors the excursion
patterns of S. canicula at the same site (Papadopoulo et al.,
2023) and suggests importance of the inshore waters of the Ría
de Vigo for coastal elasmobranchs. Notably, although
R. clavata appears to follow a specific route for entering
and exiting the array, it is important to acknowledge that our
approach points to the most probable direction taken after
Page 8 o
leaving the array, but it does not provide confirmation of the
final destination of the excursions.

Our findings establish a significant relationship between
sea bottom temperature, sex, day of the year and the probability
of presence, thus contributing significantly to our understand-
ing of animal movements and the ecological drivers of their
behaviour. However, the amount of variance explained by all
those factors was low (adjusted R2 = 0.132). This suggests that
other unaccounted biotic factors such as life cycle and abiotic
factors such as habitat type, salinity or tides are also likely
drivers of the presence of animals in the study area, as it has
been observed in other studies (Collins et al., 2008; Heupel and
Simpfendorfer, 2014; Elston et al., 2022).

Despite being limited in sample size, temporal and spatial
scope, this study has provided a preliminary insight into the
spatial ecology of the thornback skate in Galicia. In order to
effectively manage mobile elasmobranchs, it is crucial to
gather information on the factors that influence their use of
space and length of stay in a certain area. In this study, we have
identified two distinct patterns of movement exhibited by the
thornback skate. (1) A peak of presence in the study area in
summer, when their space use is at its maximum. Similar to
R. clavata, R. undulata displayed a peak in its probability of
presence during the summer, while its highest activity space
occurred in late spring (Leeb et al., 2021). In contrast,
S. canicula had the lowest probability of presence in summer
and did not exhibit significant variations in its activity space
throughout the year (Papadopoulo et al., 2023). (2) Mirroring
S. canicula, R. clavata prefered sector for exiting and
reentering the array was the sector pointing towards the Ría
de Vigo. These findings highlight distinct patterns of presence
and activity space among three elasmobranch species in the
same area, emphasizing the importance of considering species-
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specific behaviours and environmental factors in understand-
ing their distribution and ecology. This knowledge can be
useful to implement conservation strategies to better protect
the thornback skate.

Further research is needed to explore the migratory patterns
of thornback skates once they leave the array in the direction of
theRíadeVigo. It is important tounderstand their foraginghabits
and reproductive cycle in order to identify other areas and
environmental conditions that are crucial for the completion of
their life cycle. Continued research into the behavioural ecology
of thornback skates is therefore necessary to allow the
implementation of effective management plans around this
commercially important and near threatened species of skate.
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Supplementary Material

Table S1. Information of all Raja clavata tagged (including the
dead individual used as control) displaying their biometric
parameters and tagging information. Individuals were exclud-
ed from the analysis if they had less than three detection days.
Table S2. Behavioural metrics of the nine individuals of Raja
clavata considered in the analysis. Individual fish ID, FD:
number of filtered detections, DD: detected days, TD: total
tracked days, RI: residence index, AS Tot: total activity space
(km²), AS day: activity space (km²) during the day, AS night:
activity space (km²) during the night, Excursion: number of
times an individual left and returned to the study area, /: not
enough data to estimate parameters.
Figure S1. Panel displaying: (a) ©Innovasea omnidirectional
acoustic receiver attached to an auger anchor, screwed in the
seabed (b) acoustic transmitter V13P-1x externally attached
with double zip tie fixation system, (c) Raja clavata on
measuring ruler marked with both T-bar tags (©Floy Tag) (left)
and acoustic transmitter (right).
Page 9 o
Figure S2. Timeseries of latitudinal and longitudinal position as
well asdistance travelledbetweenconsecutivecentresof activity
(see definition in themain text) and depth records of a discarded
controldead individualofRajaclavata.Thedepthvariation in the
control individual corresponds to the tidal range

Figure S3. Workflow displaying the steps taken to obtain the
different parameters of Raja clavata considered in this study.
Figure S4. Total, day and night activity space areas for all Raja
clavata based on centre of activities. Red dots symbolise
©Innovasea acoustic telemetry receiver locations and the
shaded area of the activity space (KUD = kernel utilization
distribution).
Figure S5. Total, day and night activity space areas for all Raja
clavata based on centre of activities. Red dots symbolise
©Innovasea acoustic telemetry receiver locations and the
shaded area of the activity space (KUD = kernel utilization
distribution).

The Supplementary Material is available at https://www.alr.fr//
10.1051/alr/2023017/olm.
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