21 research outputs found

    Ultra-low noise supercontinuum source for ultra-high resolution optical coherence tomography at 1300 nm

    Get PDF
    Supercontinuum (SC) sources are of great interest for many applications due to their ultra-broad optical bandwidth, good beam quality and high power spectral density [1]. In particular, the high average power over large bandwidths makes SC light sources excellent candidates for ultra-high resolution optical coherence tomography (UHR-OCT) [2-5]. However, conventional SC sources suffer from high pulse-to-pulse intensity fluctuations as a result of the noise-sensitive nonlinear effects involved in the SC generation process [6-9]. This intensity noise from the SC source can limit the performance of OCT, resulting in a reduced signal-to-noise ratio (SNR) [10-12]. Much work has been done to reduce the noise of the SC sources for instance with fiber tapers [7,8] or increasing the repetition rate of the pump laser for averaging in the spectrometer [10,12]. An alternative approach is to use all-normal dispersion (ANDi) fibers [13,14] to generate SC light from well-known coherent nonlinear processes [15-17]. In fact, reduction of SC noise using ANDi fibers compared to anomalous dispersion SC pumped by sub-picosecond pulses has been recently demonstrated [18], but a cladding mode was used to stabilize the ANDi SC. In this work, we characterize the noise performance of a femtosecond pumped ANDi based SC and a commercial SC source in an UHR-OCT system at 1300 nm. We show that the ANDi based SC presents exceptional noise properties compared to a commercial source. An improvement of ~5 dB in SNR is measured in the UHR-OCT system, and the noise behavior resembles that of a superluminiscent diode. This preliminary study is a step forward towards development of an ultra-low noise SC source at 1300 nm for ultra-high resolution OCT

    Evolution of the use of corticosteroids for the treatment of hospitalised COVID-19 patients in Spain between March and November 2020: SEMI-COVID national registry

    Get PDF
    Objectives: Since the results of the RECOVERY trial, WHO recommendations about the use of corticosteroids (CTs) in COVID-19 have changed. The aim of the study is to analyse the evolutive use of CTs in Spain during the pandemic to assess the potential influence of new recommendations. Material and methods: A retrospective, descriptive, and observational study was conducted on adults hospitalised due to COVID-19 in Spain who were included in the SEMI-COVID- 19 Registry from March to November 2020. Results: CTs were used in 6053 (36.21%) of the included patients. The patients were older (mean (SD)) (69.6 (14.6) vs. 66.0 (16.8) years; p < 0.001), with hypertension (57.0% vs. 47.7%; p < 0.001), obesity (26.4% vs. 19.3%; p < 0.0001), and multimorbidity prevalence (20.6% vs. 16.1%; p < 0.001). These patients had higher values (mean (95% CI)) of C-reactive protein (CRP) (86 (32.7-160) vs. 49.3 (16-109) mg/dL; p < 0.001), ferritin (791 (393-1534) vs. 470 (236- 996) ”g/dL; p < 0.001), D dimer (750 (430-1400) vs. 617 (345-1180) ”g/dL; p < 0.001), and lower Sp02/Fi02 (266 (91.1) vs. 301 (101); p < 0.001). Since June 2020, there was an increment in the use of CTs (March vs. September; p < 0.001). Overall, 20% did not receive steroids, and 40% received less than 200 mg accumulated prednisone equivalent dose (APED). Severe patients are treated with higher doses. The mortality benefit was observed in patients with oxygen saturation </=90%. Conclusions: Patients with greater comorbidity, severity, and inflammatory markers were those treated with CTs. In severe patients, there is a trend towards the use of higher doses. The mortality benefit was observed in patients with oxygen saturation </=90%

    Measurement of forward charged hadron flow harmonics in peripheral PbPb collisions at √sNN = 5.02 TeV with the LHCb detector

    Get PDF
    Flow harmonic coefficients, v n , which are the key to studying the hydrodynamics of the quark-gluon plasma (QGP) created in heavy-ion collisions, have been measured in various collision systems and kinematic regions and using various particle species. The study of flow harmonics in a wide pseudorapidity range is particularly valuable to understand the temperature dependence of the shear viscosity to entropy density ratio of the QGP. This paper presents the first LHCb results of the second- and the third-order flow harmonic coefficients of charged hadrons as a function of transverse momentum in the forward region, corresponding to pseudorapidities between 2.0 and 4.9, using the data collected from PbPb collisions in 2018 at a center-of-mass energy of 5.02 TeV . The coefficients measured using the two-particle angular correlation analysis method are smaller than the central-pseudorapidity measurements at ALICE and ATLAS from the same collision system but share similar features

    Helium identification with LHCb

    Get PDF
    The identification of helium nuclei at LHCb is achieved using a method based on measurements of ionisation losses in the silicon sensors and timing measurements in the Outer Tracker drift tubes. The background from photon conversions is reduced using the RICH detectors and an isolation requirement. The method is developed using pp collision data at √(s) = 13 TeV recorded by the LHCb experiment in the years 2016 to 2018, corresponding to an integrated luminosity of 5.5 fb-1. A total of around 105 helium and antihelium candidates are identified with negligible background contamination. The helium identification efficiency is estimated to be approximately 50% with a corresponding background rejection rate of up to O(10^12). These results demonstrate the feasibility of a rich programme of measurements of QCD and astrophysics interest involving light nuclei

    Curvature-bias corrections using a pseudomass method

    Get PDF
    Momentum measurements for very high momentum charged particles, such as muons from electroweak vector boson decays, are particularly susceptible to charge-dependent curvature biases that arise from misalignments of tracking detectors. Low momentum charged particles used in alignment procedures have limited sensitivity to coherent displacements of such detectors, and therefore are unable to fully constrain these misalignments to the precision necessary for studies of electroweak physics. Additional approaches are therefore required to understand and correct for these effects. In this paper the curvature biases present at the LHCb detector are studied using the pseudomass method in proton-proton collision data recorded at centre of mass energy √(s)=13 TeV during 2016, 2017 and 2018. The biases are determined using Z→Ό + ÎŒ - decays in intervals defined by the data-taking period, magnet polarity and muon direction. Correcting for these biases, which are typically at the 10-4 GeV-1 level, improves the Z→Ό + ÎŒ - mass resolution by roughly 18% and eliminates several pathological trends in the kinematic-dependence of the mean dimuon invariant mass

    Measurement of lepton universality parameters in <math display="inline"><msup><mi>B</mi><mo>+</mo></msup><mo stretchy="false">→</mo><msup><mi>K</mi><mo>+</mo></msup><msup><mo>ℓ</mo><mo>+</mo></msup><msup><mo>ℓ</mo><mo>-</mo></msup></math> and <math display="inline"><msup><mi>B</mi><mn>0</mn></msup><mo stretchy="false">→</mo><msup><mi>K</mi><mrow><mo>*</mo><mn>0</mn></mrow></msup><msup><mo>ℓ</mo><mo>+</mo></msup><msup><mo>ℓ</mo><mo>-</mo></msup></math> decays

    Get PDF
    International audienceA simultaneous analysis of the B+→K+ℓ+ℓ- and B0→K*0ℓ+ℓ- decays is performed to test muon-electron universality in two ranges of the square of the dilepton invariant mass, q2. The measurement uses a sample of beauty meson decays produced in proton-proton collisions collected with the LHCb detector between 2011 and 2018, corresponding to an integrated luminosity of 9  fb-1. A sequence of multivariate selections and strict particle identification requirements produce a higher signal purity and a better statistical sensitivity per unit luminosity than previous LHCb lepton universality tests using the same decay modes. Residual backgrounds due to misidentified hadronic decays are studied using data and included in the fit model. Each of the four lepton universality measurements reported is either the first in the given q2 interval or supersedes previous LHCb measurements. The results are compatible with the predictions of the Standard Model

    Observation of the B+^{+}→ Jψηâ€ČK+^{+} decay

    Get PDF
    International audienceThe B+^{+} → Jψηâ€ČK+^{+} decay is observed for the first time using proton-proton collision data collected by the LHCb experiment at centre-of-mass energies of 7, 8, and 13 TeV, corresponding to a total integrated luminosity of 9 fb−1^{−1}. The branching fraction of this decay is measured relative to the known branching fraction of the B+^{+} → ψ(2S)K+^{+} decay and found to beB(B+→Jψηâ€ČK+)B(B+→ψ(2S)K+)=(4.91±0.47±0.29±0.07)×10−2, \frac{\mathcal{B}\left({B}^{+}\to {J\psi \eta}^{\prime }{K}^{+}\right)}{\mathcal{B}\left({B}^{+}\to \psi (2S){K}^{+}\right)}=\left(4.91\pm 0.47\pm 0.29\pm 0.07\right)\times {10}^{-2}, where the first uncertainty is statistical, the second is systematic and the third is related to external branching fractions. A first look at the J/ψηâ€Č mass distribution is performed and no signal of intermediate resonances is observed.[graphic not available: see fulltext

    Search for the rare decay of charmed baryon <math display="inline"><msubsup><mi mathvariant="normal">Λ</mi><mi>c</mi><mo>+</mo></msubsup></math> into the <math display="inline"><mi>p</mi><msup><mi>ÎŒ</mi><mo>+</mo></msup><msup><mi>ÎŒ</mi><mo>-</mo></msup></math> final state

    No full text
    International audienceA search for the nonresonant Λc+→pÎŒ+ÎŒ- decay is performed using proton-proton collision data recorded at a center-of-mass energy of 13 TeV by the LHCb experiment, corresponding to an integrated luminosity of 5.4  fb-1. No evidence for the decay is found in the dimuon invariant-mass regions where the expected contributions of resonances is subdominant. The upper limit on the branching fraction of the Λc+→pÎŒ+ÎŒ- decay is determined to be 2.9(3.2)×10-8  at  90%(95%) confidence level. The branching fractions in the dimuon invariant-mass regions dominated by the η, ρ and ω resonances are also determined

    Measurement of the Prompt <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msup><mml:mrow><mml:mi>D</mml:mi></mml:mrow><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math> Nuclear Modification Factor in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>p</mml:mi><mml:mtext>−</mml:mtext><mml:mi>Pb</mml:mi></mml:mrow></mml:math> Collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msqrt><mml:mrow><mml:msub><mml:mrow><mml:mi>s</mml:mi></mml:mrow><mml:mrow><mml:mi>N</mml:mi><mml:mi>N</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:msqrt><mml:mo>=</mml:mo><mml:mn>8.16</mml:mn><mml:mtext> </mml:mtext><mml:mtext> </mml:mtext><mml:mi>TeV</mml:mi></mml:mrow></mml:math>

    Get PDF
    The production of prompt D0D^0 mesons in proton-lead collisions in the forward and backward configurations at a center-of-mass energy per nucleon pair of sNN=8.16 TeV\sqrt{s_\mathrm{NN}} = 8.16~\mathrm{TeV} is measured by the LHCb experiment. The nuclear modification factor of prompt D0D^0 mesons is determined as a function of the transverse momentum pTp_\mathrm{T}, and rapidity in the nucleon-nucleon center-of-mass frame y∗y^*. In the forward rapidity region, significantly suppressed production is measured, which provides a stringent test of the nuclear parton distribution down to the very low Bjorken-xx region of ∌10−6\sim 10^{-6}. In the backward rapidity region, a suppression with a significance of 2 - 4 standard deviations compared to theoretical predictions is observed in the kinematic region of pT>6 GeV/cp_\mathrm{T}>6~\mathrm{GeV}/c and -3.25 D0 mesons in proton-lead collisions in both the forward and backward rapidity regions at a center-of-mass energy per nucleon pair of sNN=8.16  TeV is measured by the LHCb experiment. The nuclear modification factor of prompt D0 mesons is determined as a function of the transverse momentum pT, and the rapidity in the nucleon-nucleon center-of-mass frame y*. In the forward rapidity region, significantly suppressed production with respect to pp collisions is measured, which provides significant constraints on models of nuclear parton distributions and hadron production down to the very low Bjorken-x region of ∌10-5. In the backward rapidity region, a suppression with a significance of 2.0–3.8 standard deviations compared to parton distribution functions in a nuclear environment expectations is found in the kinematic region of pT>6  GeV/c and -3.25<y*<-2.5, corresponding to x∌0.01.The production of prompt D^0mesonsinproton−leadcollisionsintheforwardandbackwardconfigurationsatacenter−of−massenergypernucleonpairof mesons in proton-lead collisions in the forward and backward configurations at a center-of-mass energy per nucleon pair of \sqrt{s_\mathrm{NN}} = 8.16~\mathrm{TeV}ismeasuredbytheLHCbexperiment.Thenuclearmodificationfactorofprompt is measured by the LHCb experiment. The nuclear modification factor of prompt D^0mesonsisdeterminedasafunctionofthetransversemomentum mesons is determined as a function of the transverse momentum p_\mathrm{T},andrapidityinthenucleon−nucleoncenter−of−massframe, and rapidity in the nucleon-nucleon center-of-mass frame y^*.Intheforwardrapidityregion,significantlysuppressedproductionwithrespectto. In the forward rapidity region, significantly suppressed production with respect to ppcollisionsismeasured,whichprovidessignificantconstraintsofnuclearpartondistributionsandhadronproductiondowntotheverylowBjorken− collisions is measured, which provides significant constraints of nuclear parton distributions and hadron production down to the very low Bjorken-xregionof region of \sim 10^{-5}.Inthebackwardrapidityregion,asuppressionwithasignificanceof2.0−3.8standarddeviationscomparedtonPDFexpectationsisfoundinthekinematicregionof. In the backward rapidity region, a suppression with a significance of 2.0 - 3.8 standard deviations compared to nPDF expectations is found in the kinematic region of p_\mathrm{T}>6~\mathrm{GeV}/cand and -3.25<y^*<-2.5,correspondingto, corresponding to x\sim 0.01$
    corecore