151 research outputs found

    Twisted Nano-optics: Manipulating Light at the Nanoscale with Twisted Phonon Polaritonic Slabs

    Get PDF
    Recent discoveries have shown that when two layers of van der Waals (vdW) materials are superimposed with a relative twist angle between their respective in-plane principal axes, the electronic properties of the coupled system can be dramatically altered. Here, we demonstrate that a similar concept can be extended to the optics realm, particularly to propagating polaritons, hybrid light-matter interactions. To do this, we fabricate stacks composed of two twisted slabs of a polar vdW crystal (MoO3) supporting low-loss anisotropic phonon polaritons (PhPs), and image the propagation of the latter when launched by localized sources (metal antennas). Our images reveal that under a critical angle the PhPs isofrequency curve (determining the PhPs momentum at a fixed frequency) undergoes a topological transition. Remarkably, at this angle, the propagation of PhPs is strongly guided along predetermined directions (canalization regime) with no geometrical spreading (diffraction-less). These results demonstrate a new degree of freedom (twist angle) for controlling the propagation of polaritons at the nanoscale with potential for nano-imaging, (bio)-sensing, quantum applications and heat management

    The differential effects of the gonadotropin receptors on aromatase expression in primary cultures of immature rat granulosa cells are highly dependent on the density of receptors expressed and the activation of the inositol phosphate cascade

    Get PDF
    Signaling pathways mediating the divergent effects of FSH and LH on aromatase in immature rat granulosa cells were studied by infecting cells with increasing amounts of adenoviral vectors for the hLHR or hFSHR. Increasing amounts of Ad-hLHR, used at a multiplicity of infection (MOI) of 20 or 200 viable viral particles/cell increased hCG binding, hCG-induced cAMP and Akt phosphorylation but inositol phosphates only increased in response to hCG in cells infected with 200 MOI Ad-hLHR. In contrast hCG increased aromatase expression in cells infected with 20 but not in cells infected with 200 MOI Ad-hLHR. Cells infected with 20 or 200 MOI Ad-hFSHR showed increased hFSH binding and hFSH-induced Akt phosphorylation, but the hFSH-induced cAMP response was unchanged relative to control cells. However, hFSH was able to stimulate the inositol phosphate cascade in the Ad-hFSHR infected cells, and the hFSH induction of aromatase was abolished. We also found that activation of C kinase or expression of a constitutively active form of Gαq inhibited the induction of aromatase by hFSH or 8Br-cAMP. We conclude that the differential effects of FSH and LH on aromatase in immature granulosa cells are highly dependent on gonadotropin receptor density and on the signaling pathways activated. We propose that aromatase is induced by common signals generated by activation of the FSHR and LHR (possibly cAMP and Akt) and that the activation of the inositol phosphate cascade in cells expressing a high density of LHR or FSHR antagonizes this induction

    Crosstalk between cAMP and MAP Kinase Signaling in the Regulation of Cell Proliferation

    Full text link
    Hormonal stimulation of cyclic adenosine monophosphate (cAMP) and the cAMP-dependent protein kinase PKA regulates cell growth by multiple mechanisms. A hallmark of cAMP is its ability to stimulate cell growth in many cell types while inhibiting cell growth in others. In this review, the cell type-specific effects of cAMP on the mitogen-activated protein (MAP) kinase (also called extracellular signal-regulated kinase, or ERK) cascade and cell proliferation are examined. Two basic themes are discussed. First, the capacity of cAMP for either positive or negative regulation of the ERK cascade accounts for many of the cell type-specific actions of cAMP on cell proliferation. Second, there are several specific mechanisms involved in the inhibition or activation of ERKs by cAMP. Emerging new data suggest that one of these mechanisms might involve the activation of the GTPase Rap1, which can activate or inhibit ERK signaling in a cell-specific manner

    Inhibition of phosphatase and tensin homologue (PTEN) in human ovary in vitro results in increased activation of primordial follicles but compromises development of growing follicles

    Get PDF
    In the mammalian ovary a small number of follicles are steadily recruited from the quiescent pool to undergo development. Follicle loss, maintenance and growth are strictly controlled by complex molecular interactions including the phosphoinositide 3-kinase (PI3K)-protein kinase B (Akt) signalling pathway. Stimulation of PI3K promotes phosphorylation of Akt resulting in follicle survival and activation of growth whereas this pathway is suppressed by the actions of the phosphatase and tensin homologue (PTEN). The aim of this study was to determine the effect of dipotassium bisperoxo(5-hydroxypyridine-2-carboxyl)oxovanadate (bpV), a reversible inhibitor of PTEN, on the activation, survival and development of human ovarian follicles in vitro. Biopsied ovarian tissue fragments were obtained from 17 women aged 23–46 years and exposed to 1 µM bpV(HOpic) (n = 146) or control medium (n = 128) for 24 h. Media were then replaced with control medium and all tissue incubated for a further 5 days. Ovarian tissue from each treatment group was fixed after the initial 24 h culture period and phosphorylated Akt was quantified by western blotting. After 6 days incubation all tissue fragments were inspected under light microscopy and any secondary follicles ≥100 µm isolated. Isolated follicles were cultured individually in control medium supplemented with 100 ng/ml recombinant human activin A. Tissue fragments without follicles suitable for isolation were fixed and processed for histological and immunohistochemical analysis. During 6 days culture, follicle activation occurred in tissue samples from both treatment groups but with significantly more follicles progressing to the secondary stage of development in the presence of 1 µM bpV(HOpic) compared with control (31 versus 16%; P < 0.05). Increased activation was associated with increased Akt phosphorylation and increased nuclear export of FOXO3. However isolated and cultured follicles that had been exposed to bpV(HOpic) showed limited growth and reduced survival compared with follicles from control fragments (P < 0.05). This study demonstrates that inhibition of PTEN with bpV(HOpic) affects human ovarian follicle development by promoting the initiation of follicle growth and development to the secondary stage, as in rodent species, but severely compromises the survival of isolated secondary follicles

    Paracrine and autocrine regulation of epidermal growth factor-like factors in cumulus oocyte complexes and granulosa cells: Key roles for prostaglandin synthase 2 and progesterone receptor

    No full text
    The molecular bridges that link the LH surge with functional changes in cumulus cells that possess few LH receptors are being unraveled. Herein we document that epidermal growth factor ( EGF)- like factors amphiregulin ( Areg), epiregulin ( Ereg), and betacellulin ( Btc) are induced in cumulus oocyte complexes ( COCs) by autocrine and paracrine mechanisms that involve the actions of prostaglandins ( PGs) and progesterone receptor ( PGR). Areg and Ereg mRNA and protein levels were reduced significantly in COCs and ovaries collected from prostaglandin synthase 2 ( Ptgs2) null mice and Pgr null ( PRKO) mice at 4 h and 8 h after human chorionic gonadotropin, respectively. In cultured COCs, FSH/forskolin induced Areg mRNA within 0.5 h that peaked at 4 h, a process blocked by inhibitors of p38MAPK ( SB203580), MAPK kinase (MEK) 1 ( PD98059), and PTGS2 ( NS398) but not protein kinase A ( PKA) ( KT5720). Conversely, AREG but not FSH induced Ptsg2 mRNA at 0.5 h with peak expression of Ptgs2 and Areg mRNAs at 4 h, processes blocked by the EGF receptor tyrosine kinase inhibitor AG1478 ( AG), PD98059, and NS398. PGE2 reversed the inhibitory effects of AG on AREG-induced expression of Areg but not Ptgs2, placing Ptgs2 downstream of EGF-R signaling. Phorbol 12- myristate 13-acetate (PMA) and adenovirally expressed PGRA synergistically induced Areg mRNA in granulosa cells. In COCs, AREG not only induced genes that impact matrix formation but also genes involved in steroidogenesis ( StAR, Cyp11a1) and immune cell-like functions (Pdcd1, Runx1, Cd52). Collectively, FSH-mediated induction of Areg mRNA via p38MAPK precedes AREG induction of Ptgs2 mRNA via ERK1/2. PGs acting via PTGER2 in cumulus cells provide a secondary, autocrine pathway to regulate expression of Areg in COCs showing critical functional links between G protein- coupled receptor and growth factor receptor pathways in ovulating follicles.136513524,967Q
    corecore