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abstract: In the mammalian ovary a small number of follicles are steadily recruited from the quiescent pool to undergo development. Follicle
loss, maintenance and growth are strictly controlled by complex molecular interactions including the phosphoinositide 3-kinase (PI3K)-protein
kinase B (Akt) signalling pathway. Stimulation of PI3K promotes phosphorylation of Akt resulting in follicle survival and activation of growth
whereas this pathway is suppressed by the actions of the phosphatase and tensin homologue (PTEN). The aim of this study was to determine
the effect of dipotassium bisperoxo(5-hydroxypyridine-2-carboxyl)oxovanadate (bpV), a reversible inhibitor of PTEN, on the activation, survival
and development of human ovarian follicles in vitro. Biopsied ovarian tissue fragments were obtained from 17 women aged 23–46 years and
exposed to 1 mM bpV(HOpic) (n ¼ 146) or control medium (n ¼ 128) for 24 h. Media were then replaced with control medium and all
tissue incubated for a further 5 days. Ovarian tissue from each treatment group was fixed after the initial 24 h culture period and phosphorylated
Akt was quantified by western blotting. After 6 days incubation all tissue fragments were inspected under light microscopy and any secondary
follicles ≥100 mm isolated. Isolated follicles were cultured individually in control medium supplemented with 100 ng/ml recombinant human
activin A. Tissue fragments without follicles suitable for isolation were fixed and processed for histological and immunohistochemical analysis.
During 6 days culture, follicle activation occurred in tissue samples from both treatment groups but with significantly more follicles progressing
to the secondary stage of development in the presence of 1 mM bpV(HOpic) compared with control (31 versus 16%; P , 0.05). Increased ac-
tivation was associated with increased Akt phosphorylation and increased nuclear export of FOXO3. However isolated and cultured follicles that
had been exposed to bpV(HOpic) showed limited growth and reduced survival compared with follicles from control fragments (P , 0.05). This
study demonstrates that inhibition of PTEN with bpV(HOpic) affects human ovarian follicle development by promoting the initiation of follicle
growth and development to the secondary stage, as in rodent species, but severely compromises the survival of isolated secondary follicles.

Key words: PTEN / in vitro / human / follicle / ovary

Introduction
Human ovarian follicles largely exist as a quiescent population, of which a
small number daily initiate growth throughout reproductive life. Only a
small proportion of these follicles go on to complete growth and
release a mature fertilizable oocyte. Remaining follicles degenerate
either from the dormant state (Tingen et al., 2009) or after growth has
been initiated (Kaipia and Hsueh, 1997). Development of growing

follicles is controlled by the coordinated actions of multiple complex,
integrated signalling pathways regulated by local and systemic hormonal
signals (Pangas, 2007; Sobinoff et al., 2013) and reproductive senescence
occurs when the quiescent follicle population is exhausted through acti-
vation and degeneration. Prior to exhaustion of the follicle pool, the over-
whelming majority of human follicles are dormant and can persist in this
state for decades. The ability to recruit these dormant follicles into the
growing pool and support their complete development in vitro would
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address the scarcity of oocytes available for assisted reproduction tech-
niques (ART), fertility preservation and provide basic scientific informa-
tion on human germ cell development.

Biochemical and genetic manipulation studies in the mouse have iden-
tified the phosphoinositide 3-kinase - protein kinase B (PI3K-Akt) signal-
ling pathway as a key mechanism involved in the maintenance of follicle
growth and loss. Several growth factors, including follicle stimulating
hormone (FSH), stimulate PI3K to activate phosphoinositide-dependent
protein kinase-1 (PDK1) resulting in phosphorylation of Akt and down-
stream transcription factors including the forkhead winged helix box O1
(FOXO1) triggering follicle activation and development (Gonzalez-
Robayna et al., 2000; Alum et al., 2004). These events are reversed by
the action of phosphatase and tensin homologue (PTEN) which causes
dephosphorylation of phosphatidlyinositol 3, 4, 5-triphosphate (PIP3)
thus regulating the initiation of follicle growth and preventing premature
exhaustion of the follicle pool (Cantley and Neel, 1999; John et al., 2008).
The effect of PTEN can be reversibly inhibited by vanadate derivatives
acting as protein tyrosine phosphatase inhibitors thereby promoting
the downstream phosphorylation of Akt (Schmid et al., 2004; Morohaku
et al., 2013). Recent studies have demonstrated the importance of the
PTEN and the PI3K pathway within the oocyte in the regulation of
murine ovarian follicle activation. Deletion of PTEN in mouse oocytes
resulted in pan-ovarian follicle activation and premature oocyte deple-
tion whereas disruption of granulosa cell-specific PTEN did not affect ini-
tiation of follicle growth but increased granulosa cell proliferation and
enhanced ovulation (Fan et al., 2008; Reddy et al., 2008). Li et al.
(2010) investigated the effect of exposing whole mouse ovaries to a com-
bination of a vanadate derivative compound dipotassium bisperoxo(5-
hydroxypyridine-2-carboxyl)oxovanadate (V) (bpV(HOpic)), and 740Y-P,
a cell-permeable phospho-peptide PI3K pathway promoter. These experi-
ments demonstrated increased activation of dormant follicles evidenced by
increased ovarian weight, the histological detection of large antral follicles
and immunohistological detection of nuclear exclusion of forkhead box
O3 protein (FOXO3) in oocytes. After bpV(HOpic) treatment, ovaries
grafted under the kidney capsule were able to complete development
and generate mature eggs (Li et al., 2010). Moreover using a xeno-
transplantation model human ovarian follicles treated with bpV(HOpic)
developed into pre-ovulatory follicles with oocytes that appeared to be
capable of undergoing in vitro maturation (Li et al., 2010). It has been sug-
gested that PTEN inhibitors could be used to generate mature oocytes in
women whose oocyte reserve is impaired due to illness or treatment and
to provide oocytes for derivation of embryonic stem cells (Li et al., 2010;
Adhikari et al., 2012). Investigation of the human follicle response to
bpV(HOpic) has so far required a xeno-transplantation model to complete
follicle development. Therefore, it is not yet known how promotion of the
PI3Kpathwayaffects the development of in vitro grown (IVG)humanovarian
follicles or whether chemically enhanced initiation of follicle growth could
provide a population of biopsy-derived growing follicles of sufficient
quality for in vitro maturation.

Culture systems have been designed to support the key stages of
human follicle development. The initiation of follicle growth (Hovatta
et al., 1997; Abir et al., 1999; Hovatta et al., 1999; Wright et al., 1999;
Picton and Gosden, 2000; Zhang et al., 2004; Telfer et al., 2008),
primary to secondary transition (Abir et al., 1997, 1999; Telfer et al.,
2008), pre-antral follicle development (Roy and Treacy, 1993; Abir
et al., 1997; Otala et al., 2004; Telfer et al., 2008; Xu et al., 2009) and
oocyte maturation (Shea et al., 1975; Alak et al., 1998; Mikkelsen et al.,

1998) have all been achieved in vitro. Despite the prevalence of primordial
follicles in the ovary (Gougeon 1986; Gosden and Telfer, 1987) develop-
ment of systemssupporting the continuum of initiation of growth through
to final oocyte maturation in vitro has been hampered by the limited avail-
ability of human ovarian tissue and the recognized variation in follicle
density between and within cortical biopsies (Kohl et al., 2000; Qu
et al., 2000; Poirot et al., 2002; Schmidt et al., 2003). The purpose of
this study was to investigate the effect of inhibition of PTEN on the initi-
ation of human follicle growth and the subsequent survival and develop-
ment of follicles in vitro, by incubating ovarian cortical fragments in the
presence of the phosphatase inhibitor bpV(HOpic). This approach
uses a two-step culture system designed to promote the activation of
human follicle growth within fragments of ovarian cortex and then
support the continued development of isolated secondary follicles.

Materials and Methods

Ovarian cortical tissue
Cortical tissue was obtained by ovarian biopsy from a total of 17 adult
women; 13 undergoing elective Caesarean section and 4 who underwent
laparoscopy for non-malignant gynaecological conditions. Their mean
(+SD) age was 36.5+1.3 years, ranging from 23 to 46 years. This study
received local ethical committee approval and all women gave informed
consent.

Tissue preparation and fragment culture
Ovarian cortex was transferred to the laboratory in pre-warmed dissection
medium [Leibovitz medium (Life Technologies Ltd, Paisley, UK) supplemen-
ted with sodium pyruvate (2 mM), glutamine (2 mM) (both Life Technologies
Ltd), human serum albumin (HSA) (3 mg/ml), penicillin G (75 mg/ml) and
streptomycin (50 mg/ml) (Sigma-Aldrich Chemicals, Dorset, UK)]. The bi-
opsied tissue pieces were transferred into fresh dissection medium under
laminar flow conditions and examined carefully using light microscopy to dis-
tinguish cortical tissue from the underlying stroma. Damaged and/or haem-
orrhagic tissue was excised allowing the pieces to flatten. With the cortex
uppermost the tissue was gently stretched using the blunt edge of a scalpel
blade and excess stromal tissue removed. Then using an angled incision the
tissue was cut into fragments of �4 × 2 × 1 mm thick. Using a dissecting
microscope, each fragment was examined for the presence of follicles. A
mean diameter was recorded for each follicle observed. Any follicles meas-
uring .40 mm were excised from the tissue fragments using either 25
gauge needles attached to 1 ml syringe barrels or a no.10 blade and handle
and fine forceps; this was to ensure a presumptive population of unilaminar
follicles. Three to four fragments were selected from each biopsy as 0 h con-
trols and fixed in 10% buffered formalin (NBF) for histological evaluation. The
remaining pieces were cultured individually in culture medium [McCoy’s 5a
medium with bicarbonate supplemented with HEPES (25 mM) (Life Tech-
nologies Ltd), glutamine (3 mM) (Life Technologies Ltd), HSA (0.1%), peni-
cillin G (0.1 mg/ml), streptomycin (0.1 mg/ml), transferrin (2.5 mg/ml),
selenium (4 ng/ml) and ascorbic acid (50 mg/ml) (all obtained from
Sigma-Aldrich Chemicals, Dorset, UK, unless otherwise stated)] or culture
medium supplemented with 1 mM bpV(HOpic) (Merck Chemicals Ltd,
UK) at 378C in humidified air with 5% CO2 for 24 h. Half the tissue fragments
from both groups were then snap-frozen and stored at 2808C for western
blot analysis. Medium was removed from the remaining fragments and
replaced with fresh culture medium without bpV(HOpic) and supplemented
with insulin (10 ng/ml) (Sigma-Aldrich Chemicals) and hFSH (1 ng/ml)
(Sigma-Aldrich Chemicals). Tissue was incubated for a further 5 days with
half the medium being removed and replaced every second day. A total of
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274 cortical fragments were cultured from 17 separate ovarian biopsies
(control n ¼ 128; 1 mM bpV(HOpic) n ¼ 146).

Follicle isolation and culture
After 6 days of incubation tissue fragments were transferred to dissection
medium and examined under light microscopy. Follicles were inspected
using a dissecting microscope and a mean diameter for each was calculated.
Secondary follicles ≥100 mm in diameter were dissected using 25 gauge
needles. Tissue fragments with no detectable follicles or only unilaminar fol-
licles present were fixed in NBF and processed as described below. A total of
51 pre-antral follicles were isolated from tissue fragments incubated in
control medium or medium supplemented with 1 mM bpV(HOpic). Isolated
follicles were placed individually in 96-well V-bottomed culture plates in
150 ml of culture medium supplemented with insulin (10 ng/ml), hFSH
(1 ng/ml) and 100 ng/ml recombinant human activin A (rhAct A) (R & D
Systems, Abingdon, UK). Isolated follicles were incubated for a further
6 days at 378C in humidified air with 5% CO2. Every second day half the
culture medium was removed and replaced and at the same time follicle
diameter was measured using a dissecting microscope with a crossed mi-
crometer.

Tissue processing
On completion of the incubation period isolated follicles and fragments of
cultured cortical tissue were fixed for 24 h in 10% neutral buffered formalin
NBF and dehydrated in increasing concentrations of ethanol (70, 90 and
100%). Absolute alcohol was removed and replaced with cedar wood oil
(BDH Laboratory Supplies, Poole, UK) for 24 h. The tissue was removed
to toluene (Fisher Scientific UK Ltd, Loughborough, UK) for 30 min to
ensure complete clearance of oil. Isolated follicles/cortical fragments were
individually embedded in paraffin wax at 608C for 4 h with hourly changes
of wax to ensure complete removal of toluene. Isolated follicles and cortical
fragments were cut into 6 mm sections, mounted on gelatin-coated slides and
left to dryovernight prior to stainingwith haematoxylin and eosin. Uncultured
tissue fragments collected from each biopsy were processed also for histo-
logical analysis using the same methodology.

Immunohistochemistry
bpV(HOpic) and control treated tissue fragments were fixed in NBF, dehy-
drated in alcohol, embedded in paraffin wax and cut into 6 mm sections as
described above to investigate the expression of FOXO3. Antigen retrieval
was performed using 0.01 M sodium citrate for 20 min and endogenous per-
oxidase activity was quenched using 3% hydrogen peroxide in methanol.
Tissue sections were incubated in FOXO3 #9467s monoclonal primary anti-
body (Cell Signalling, Herts, UK) overnight at 48C. Negative controls were
established by replacing the primary antibody with goat serum. On comple-
tion of incubation the sections were washed and probed with anti-rabbit sec-
ondary antibody labelled with horseradish peroxidase for 30 min (ABC-Elite
Rabbit IgG, Vectastain Elite Kit, PK-6101, Vectastain ABC Kit, Vector, Peter-
borough, UK). FOXO3 was detected using 3, 3′-diaminobenzidine (DAB)
peroxidase substrate kit (Vector Laboratories Ltd, Peterborough, UK). Fol-
licles were scored positive (activated) when brown staining was observed in
the ooplasm and negative (non-growing) when brown staining was observed
in the germinal vesicle.

Western blotting
Protein was lysed in RIPA buffer with Protease and Phosphatase Inhibitors
(Roche Products Limited, Welwyn Garden City, UK). Samples (20 mg)
were denatured and loaded onto 4–20% gels in Tris-Hepes running buffer
with 5 ml PageRuler Plus ladder (Thermo Fisher Scientific, Hemel Hemp-
stead, UK) and run at 100 volts for �1 h. Immobilon-FL blotting paper

(Merck Millipore, Nottingham, UK) was soaked in methanol, rinsed in dis-
tilled water (dH2O) and soaked in Semi-Dry Transfer Buffer (Thermo
Fisher Scientific). The gel was also equilibrated in dH20 and then Semi-Dry
Transfer Buffer before transfer for 9 min on a Pierce Fast Semi-Dry Blotter
(Thermo Fisher Scientific).

Blots were rinsed in dH20 and blocked in Blocking Buffer (Rockland Immu-
nochemicals, Inc. PA, USA) 1:1 in phosphate buffered saline plus 0.1% Tween
(PBS-T) for 1 h at room temperature. Blots were then incubated with a rabbit
polyclonal antibody raised against either Akt (9272) or pAkt (9271) (Cell Sig-
naling, both diluted 1:1000) and with a mouse monoclonal antibody raised
against beta-actin (Sigma-Aldrich; antibody A5441, diluted 1:5000) overnight
at 48C. Blots were washed in 0.1% PBS-T and then incubated with a poly-
clonal donkey antibody raised against rabbit IgG (heavy and light chain) con-
jugated with Alexa Fluor680 (Invitrogen, Paisley, UK; diluted 1:10000) and a
donkey polyclonal antibody raised against mouse IgG (H&L) conjugated with
IRDye800 (Rockland Immunochemicals; diluted 1:10000) for 1 h at room
temperature. They were then washed in PBS-Tween and then PBS before
scanning using a LI-COR Odyssey (LI-COR Biosciences UK Ltd, Cowley
Road, Cambridge, UK).

Evaluation of histology
A light microscope with a crossed micrometer was used to examine every
section of each fragment of cortical tissue. Using a slightly modified version
of the system employed by Telfer et al. (2008) follicles were classified accord-
ing to their developmental stage dependent on the morphology and abun-
dance of the granulosa cells observed as follows: (i) non-growing follicles:
follicles constituting the resting pool, characterized by oocytes surrounded
by a complete or incomplete single layer of cells, either all flat (primordial)
or a mixed layer of flattened and cuboidal cells (transitory) (Smitz and Cortv-
rindt, 2002), (ii) primary follicles: follicles comprising of an oocyte surrounded
by a single layer of cuboidal granulosa cells, (iii) secondary follicles: multilami-
nar follicles with more than a single layer of cuboidal granulosa cells and (iv)
antral: antrum present within a multilaminar follicle. Evaluation of isolated fol-
licles and follicles within cortical fragments was made on the section contain-
ing the nucleolus except when determining the presence of an antrum in
isolated follicles where all sections of the follicle were examined. Mean follicle
and oocyte diameter was recorded for each isolated and fragment-enclosed
follicle evaluated.

Follicle morphological health was determined by assessment of oocyte ap-
pearance and granulosa cell pyknosis on histological sections of tissue
fragments. Follicles were assessed using the cross-section containing the nu-
cleolus. Oocyte and granulosa cell morphology were assessed as described
by McLaughlin and Telfer (2010) and McLaughlin et al. (2010) with slight
modification. Briefly for follicles to be categorized as morphologically normal,
the oocyte must be grossly circular, surrounded by a zona pellucida, have a
visible germinal vesicle and defined nucleolus with ,10% of pyknotic granu-
losa cells present; follicles meeting these criteria were considered to have
survived the in vitro period.

Statistical analyses
Inter and intra-treatment differences in follicle and oocyte diameters were
compared by one-way ANOVA with subsequent t-tests. Proportional data
were compared using chi-squared analysis and Fishers Exact test.

Results

Assessment of cortical tissue pieces
The numberand developmental stage of follicles in human ovarian cortex
at 0 h was determined in 54 freshly fixed cortical tissue pieces of which 28
contained follicles; a total of 152 follicles were identified and analysed.
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The number of follicles observed varied considerably within and
between patients in both obstetric and gynaecological tissue pieces
ranging from 0 to 22 follicles. This highly irregular distribution of follicles
in human ovarian cortex has been reported previously (Block 1951;
Hreinsson et al., 2002; Poirot et al., 2002; Schmidt et al., 2003; Kristensen
et al., 2011). Of the 152 follicles analysed, 86.2% were non-growing with
the remaining follicles being at the primary (11.1%) or secondary stage
(2.6%). No antral follicles were observed in any uncultured tissue frag-
ments (Fig. 1A). No difference was observed in the maturity of follicles
between obstetric and gynaecological tissue pieces.

Follicle activation in cultured cortical
fragments
Microscopic examination of cultured cortical fragments showed that
after 6 days incubation significant initiation of follicle growth had occurred
in both treatment groups compared with uncultured tissue. 45.5 and
60% of follicles were observed to be growing in control and bpV(HOpic)

exposed tissue, respectively (86 of 189 follicles in control compared with
187 of 312 follicles in bpV(HOpic)). Significantly more growing follicles
were observed in bpV(HOpic) treatment compared with control (P ¼
0.0016). The most mature follicles present in either of the treatments
were secondary follicles (Fig. 1B and C), with a significantly greater per-
centage present in tissue exposed to bpV(HOpic) compared with
control (30.5 versus 16%) (P ¼ 0.012; Fig. 1D). No antral follicles
were observed in either treatment group after 6 days in vitro.

Activation of PI3K pathway in bpV(HOpic)
exposed tissue
To investigate whether the PI3K pathway was influenced by suppression
of PTEN in human ovarian cortex, western blotting was performed on
control and bpV(HOpic) exposed tissue fragments (n ¼ 46 and 51, re-
spectively) from 8 of the 17 patients included in this study; the number
varied between patients owning to differing size of biopsies. A
minimum of four and a maximum of eight fragments per treatment

Figure 1 (A) Photomicrograph of 0 h human ovarian cortex; all follicles are at the earliest stages of development. (B and C) Photomicrographs of cul-
tured ovarian cortex at Day 6 showing activation of follicle growth coincident with non-growing follicles in control (B), and in bpV(HOpic) treated cortical
tissue (C) showing multiple secondary follicles. (D) Distribution of follicles in adult human ovarian cortical tissue bystage of development in uncultured tissue
(0 h) and at Day 6. Follicle distribution is shown as a percentage of the total. Arrows indicate in vitro grown secondary follicles. Scale bar ¼ 50 microns.
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were used per western blot. Figure 2A shows western blotting indicating
an increase in pAkt in bpV(HOpic) exposed tissue compared with
control. Quantification indicated that Akt phosphorylation was
increased �3-fold in tissue exposed to bpV(HOpic) for 24 h compared
with control (P ¼ 0.0086, n ¼ 5 independent blots) (Fig. 2B). Thus
PTEN suppression induced by bpV(HOpic) results in increased PI3K
pathway activation.

Nuclear exclusion of FOXO3
Immunohistochemistry was performed to determine whether suppres-
sing PTEN resulted in nuclear exclusion of FOXO3, a downstream
protein component of the PI3K pathway which exits the nucleus as non-
growing follicles are activated (Li et al., 2010). Tissue sections incubated
with and without bpVHOpic from 10 patients were examined; treatment
groups were blinded to the examiner. A total of 89 follicles were analysed
(control n ¼ 48; bpV(HOpic) n ¼ 41). The number of sections per slide
and of follicles per section was highly variable, characteristic of follicle

distribution in human ovarian tissue. Non-nuclear detection of
FOXO3 was observed in significantly more follicles (43.9%) in tissue
exposed to bpV(HOpic) compared with controls (20.8%, P ¼ 0.019;
Fig. 2C and D). In control exposed tissue FOXO3 exclusion was
observed in both primary and secondary growing follicles (80%
primary and 20% secondary). Similarly in bpV(HOpic) exposed tissue
FOXO3 exclusion was observed in both primary and secondary follicles
(45% primary and 55% secondary).

Follicle survival in cultured cortical fragments
Follicle morphological health was determined by assessment of oocyte
appearance and granulosa cell pyknosis on histological sections of
tissue fragments. A non-significant reduction in survival was observed
between both treatment groups for all stages of follicle development
compared with uncultured controls (Fig. 3A). Non-growing follicles
had a high in vitro survival rate irrespective of treatment with 74.7 and
77.6% of follicles appearing morphologically normal following incubation

Figure2 (A) Western blot showing enhanced phosphorylation of Akt in tissue exposed to bpV(HOpic) compared with control cultured tissue, indicating
PTEN inhibition is associated with increased activation of the PI3K pathway; b-actin used as loading control. (B) The fold change in expression of pAkt in
human ovarian tissue in control and bpV(HOpic) treated tissue, indicating significantly higher AKT phosphorylation in bpV(HOpic) treated tissue
(*P , 0.01, n ¼ 5). (C) Photomicrographs showing immunohistochemical detection of FOXO3 in human ovarian cortex. (i) Brown staining indicating
nuclear enclosed, inactivated FOXO3 in a non-growing follicle exposed to control medium. Arrow indicates discrete brown staining in germinal vesicle;
(ii) export of FOXO3 from the nucleus indicated by brown staining in the ooplasm of in vitro grown secondary follicle exposed to bpV(HOpic), indicating
activation of PI3K pathway with Akt phosphorylation. Arrow indicates absence of staining in the germinal vesicle. (iii) Negative control. Scale bar ¼ 30
microns. (D) Oocyte nuclear export of FOXO3 in control and bpV(HOpic) treated tissue: a significantly greater percentage of Oocytes showed
FOXO3 nuclear export in tissue exposed to bpV(HOpic) compared with control (*P ¼ 0.0019). Eighty-nine follicles analysed in total, 48 from control
and 41 from bpV(HOpic) exposed tissue.
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in control and bpV(HOpic), respectively, compared with 80.1% in uncul-
tured tissue (non-growing versus control P ¼ 0.601; non-growing versus
bpV(HOpic) P ¼ 0.655). No significant difference was observed in
primary or secondary follicle survival between control and 1 mM
bpV(HOpic) with over 69% of follicles from both treatments appearing
morphologically normal after 6 days incubation (primary follicles,
control versus bpV(HOpic) P ¼ 0.934; secondary follicles, control
versus bpV(HOpic) P ¼ 0.759) (Fig. 3A).

Growth of isolated follicles
Care was taken during mechanical isolation of follicles to ensure basal
laminae were not exposed to prevent compromising follicle develop-
ment. Due to the considerable variation in stromal tissue density
between and within biopsies the amount of tissue surrounding isolated
follicles varied; however, sufficient stromal tissue was left enclosing
each follicle to provide a presumptive theca cell layer for further follicular
development. On completion of the first step of the culture system there

was no significant difference in the diameter of follicles isolated from
bpV(HOpic) exposed tissue compared with those isolated from
control (Fig. 3B). Follicle diameters were recorded every second day
after isolation until completion of the culture period. Measurements
were recorded using a dissecting microscopewith acrossed micrometer.
During the subsequent 6 day culture period follicles isolated from control
tissue increased significantly in diameter (114+2 to 181+ 8 mm; P ,

0.001), whereas follicles isolated from tissue exposed to bpV(HOpic)
exhibited limited, nonsignificant growth (115+ 1 to 120+ 3 mm;
Fig. 3B). Thus at the end of this period follicles from control tissue
were significantly larger than those from bpV(HOpic) treated tissue
(P ¼ 0.0001).

Survival of isolated follicles
Survival of isolated follicles wasassessed as per the criteria used for evalu-
ation of follicle survival within cultured tissue fragments described above.
Three follicles degenerated during the first 4 days of individual culture; 1

Figure 3 (A) The percentage of morphologically normal follicles observed in tissue fragments in uncultured tissue (0 h) and after 6 days culture in control
or bpV(HOpic) medium. Percentages of healthy follicles are shown by developmental stage. (B) Mean diameter (mm) of follicles isolated from control
(green) and bpV(HOpic) (red) exposed tissue over a further 6 days in vitro. At the end of the culture period follicles isolated from control tissue were sig-
nificantly larger than bpV(HOpic) treated follicles (*P , 0.001). (C) On completion of the isolated follicle culture period a significantly greater percentage of
control exposed follicles were morphologically normal compared with those exposed to bpV(HOpic) (*P , 0.01). (D) Photomicrographs of isolated fol-
licles after a total of 12 days in culture. (i) Morphologically normal IVG follicle from control cultured tissue, and (ii) morphologically abnormal IVG follicle
isolated from bpV(HOpic) exposed tissue. Scale bar ¼ 50 microns.
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from tissue exposed to control medium and 2 from tissue fragments
treated with bpV(HOpic); data from these follicles were excluded
from in-vitro growth analysis. Follicular morphology was assessed by in-
spection of histological sections and was used to determine normality
and thus survival. Follicle survival was significantly higher in follicles
from tissue fragments exposed to control medium, with 13 of the 22
(59%) follicles surviving the culture period being deemed morphological-
ly normal compared with 7 of 26 (27%) surviving follicles from tissue frag-
ments exposed to bpV(HOpic) (P ¼ 0.02; Fig. 3C). Morphological
abnormalities observed included shrunken oocytes, widespread granu-
losa cell pyknosis and loss of granulosa cell-oocyte proximity. Represen-
tative images of both normal and morphologically abnormal follicles are
shown in Fig. 3D.

Discussion
Disruption of the PI3K pathway using knockout models (Fan et al., 2008;
Reddy et al., 2008) and pharmacological stimulators and/or inhibitors
(Li et al., 2010; Adhikari et al., 2012) promotes activation of follicle
growth in mice and xeno-transplanted human ovarian tissue and
enhances murine ovulation. In this study we investigated the ability of
bpV(HOpic) a pharmacological inhibitor of PTEN, a major negative regu-
lator of the PI3K pathway, to affect human ovarian follicle activation and
development in both tissue fragments and isolated follicles in vitro. We
hypothesized that using an established two-step culture system (Telfer
et al., 2008) selective promotion of the PI3K pathway by pharmacological
inhibition of PTEN would promote (i) initiation of growth in quiescent fol-
licles within cortical tissue fragments and (ii) the development of in vitro
grown (IVG) secondary follicles to the large pre-antral and/or early
antral stage. Our results show that exposure of human ovarian cortex
to bpV(HOpic) increased the activity of the PI3K pathway and promoted
follicle activation and development to the secondary stage. However, fol-
lowing isolation from cortical tissue fragments the key novel finding of this
study emerged, that secondary follicles previously exposed to bpV(HO-
pic) grew very poorly and their survival was severely compromised.

In this study increased activity of the PI3K pathway was confirmed by
an increase in Akt phosphorylation and nuclear export of FOXO3.
Whilst within the germinal vesicle, FOXO3 is a recognized suppressor
of primordial follicle growth; when relocated to the ooplasm this sup-
pression is lifted and follicle activation occurs (Gonzalez-Robayna
et al., 2000). Li et al. (2010) also demonstrated nuclear export of
FOXO3 in the oocytes of human ovarian follicles; however, a recent
study has challenged this paradigm and suggests that FOXO3 is not a re-
quirement for human primordial follicle growth arrest (Tarnawa et al.,
2013). Tarnawa and colleagues reported on data obtained from one
human ovary whereas in this study we analysed immunohistochemical
detection of FOXO3 exclusion from 10 patients. Whilst is unclear
how many ovaries Li et al. (2010) included in their study they also de-
scribe results from multiple human biopsies; therefore we suggest the di-
vergence of results may be due to the difference in the number biopsies
analysed.

The controlled promotion of human ovarian follicle development to
obtain oocytes capable of undergoing in vitro maturation and fertilization
with subsequent embryo development is the ultimate goal of human
ovarian follicle culture. Pharmacological promotion of follicle growth in
vitro followed by a xeno-transplantation model has resulted in embryo
development and live litters being achieved in mice (Li et al., 2010;

Adhikari et al., 2012). The initial results presented here are in agreement
with previous work demonstrating that pharmacological inhibition of
PTEN stimulates follicle activation in the human ovarian cortex (Li
et al., 2010). In our study a concentration of 1 mM was chosen
because in preliminary experiments using 10 and 100 mM bpV(HOpic),
increased follicle growth wasassociated with gross morphological abnor-
malities in activated follicles prior to isolation from cortical fragments
(not shown). We suggest that the reduced follicle survival observed
with higher concentrations of bpV(HOpic) treatment is associated
with the specific manner in which tissue is prepared for incubation.
Unlike tissue cubes, our method of tissue fragment preparation maxi-
mizes the exposure of the ovarian cortex to the culture medium by loos-
ening the cortical surface and removing excess dense connective stromal
tissue which may prevent cortical exposure to media components and
physically impede follicle activation and development. The present
method of tissue preparation has been successfully employed to
promote the activation of follicle growth in bovine and in fresh and
cryopreserved-thawed pre-pubertal as well as pubertal and adult
human ovarian tissue (Telfer et al., 2008; McLaughlin and Telfer, 2010;
Anderson et al., 2014). We suggest that preparing the cortex in this
manner allows maximum cortical exposure to the culture medium,
and in preliminary experiments determined that the optimal concentra-
tion of bpV(HOpic) which promoted activation of follicle growth and
maintained normal morphology was1 mM. It is unclear whether themor-
phological normality of human follicles activated by higher doses of
bpV(HOpic) was assessed prior to xeno-transplantation (Li et al.,
2010). It is however noteworthy that Adhikari et al. (2012) exposed
mouse ovaries to 1 mM bpV(HOpic) to produce fertilizable IVG
oocytes (Adhikari et al., 2012). bpV(HOpic) activated follicles were
intact after 6 days incubation and not different in diameter from controls.
bpV(HOpic) treatment did not therefore recruit a suboptimal follicle
population. Following a further 6 days in culture bpV(HOpic)-exposed
follicles grew poorly and deteriorated significantly. A previous study
reported normal follicular development in mice following a conditional
deletion of the PTEN gene in oocytes with normal oocyte maturation, fer-
tility and litter size observed (Jagarlamudi et al., 2009). However our
study is not the first report of bpV(HOpic) treatment affecting human
ovarian follicle development deleteriously. Lerer-Serfaty et al. (2013) re-
cently reported widespread follicle destruction in cryopreserved-
thawed human tissue exposed to a high concentration of 100 mM
bpV(HOpic); this supports the view that manipulation of the PI3K
pathway may also have negative impact on other signalling mechanisms
(Blanco-Aparicio et al., 2007). Whilst PI3K activation and subsequent
pAkt promotion by bpV(HOpic) can induce follicle activation in human
ovarian tissue, it is possible that other Akt-independent effects of
PTEN inhibition cause the follicle degeneration seen in this study and
by other investigators (Lerer-Serfaty et al., 2013).

Growth was limited and normal follicular morphology significantly
compromised in follicles isolated from tissue fragments exposed to
bpV(HOpic). It is well established that maintenance of bi-directional
oocyte/somatic cell communication is vital for normal follicle develop-
ment (Albertini et al., 2001; Eppig, 2001) and although an extensive mor-
phological analysis was not possible due to degeneration, it is suggested
that vital oocyte-somatic cell contact was damaged as a result of
bpV(HOpic) exposure. As activated follicles exposed to bpV(HOpic)
were morphologically normal within tissue fragments at Day 6 of the
culture period, it is possible that the surrounding stromal environment
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was able to modulate or circumvent the deleterious effects of PTEN in-
hibition over a relatively short period of time. It is unlikely however that
allowing bpV(HOpic) activated follicles to remain within the presumptive
protection of the stromal fragments would result in the development of
morphologically mature follicles as it has been demonstrated that pro-
longed culture results in widespread follicle loss by atresia (Hovatta
et al., 1999).

A human live birth has recently been reported following treatment of
ovarian tissue for 48 h in vitro with bpV(HOpic) and 740Y-P, an Akt
stimulant, followed by replacement and IVF (Kawamura et al., 2013).
This is an encouraging development but is difficult to compare directly
to the results reported here which utilize an entirely in vitro system.
The human tissue Kawamura et al. (2013) incubate with Akt stimulants
is described as containing a range of both non-growing and growing fol-
licles; the early oocytes retrieved from pre-ovulatory follicles were
believed to be derived from rapidly growing secondary follicles contained
in the auto-grafted tissue. Exposure to bpV(HOpic) and 740Y-P may
confer direct or indirect protection from apoptosis on secondary folli-
cles, although the absence of control experiments does not allow clear
assessment of the effects of the Akt stimulants in that study. The
present study does not investigate this possibility as only follicles
,40 mm in diameter, i.e. non-growing or primary are present at the
time of tissue exposure to bpV(HOpic).

In conclusion these data confirm that the PI3K pathway is involved in
the regulation of initiation of growth of human ovarian follicles. Treat-
ment of human ovarian cortical tissue with bpV(HOpic) promotes acti-
vation and development of follicles but does not confer any advantage on
follicle development beyond the secondary stage and does not prolong
isolated follicle survival, indeed a significant deleterious effect was found.

It does not appear therefore that promotion of the PI3K pathway by
inhibition of PTEN using bpV(HOpic) is a candidate treatment for the
robust generation of numbers of good-quality mature IVG human
oocytes. Pharmacological manipulation of the PI3K pathway to
promote follicle development has been successfully achieved in mice
via promotion of other components of PI3K, e.g. by using 740Y-P (Li
et al., 2010), and it remains to be seen whether this molecule can be
used to promote follicle activation and maintain morphologically
normal growth in human ovarian follicles.
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