10 research outputs found

    Testing matter effects in propagation of atmospheric and long-baseline neutrinos

    Full text link
    We quantify our current knowledge of the size and flavor structure of the matter effects in the evolution of atmospheric and long-baseline neutrinos based solely on the analysis of the corresponding neutrino data. To this aim we generalize the matter potential of the Standard Model by rescaling its strength, rotating it away from the e-e sector, and rephasing it with respect to the vacuum term. This phenomenological parametrization can be easily translated in terms of non-standard neutrino interactions in matter. We show that in the most general case, the strength of the potential cannot be determined solely by atmospheric and long-baseline data. However its flavor composition is very much constrained and the present determination of the neutrino masses and mixing is robust under its presence. We also present an update of the constraints arising from this analysis in the particular case in which no potential is present in the e-mu and e-tau sectors. Finally we quantify to what degree in this scenario it is possible to alleviate the tension between the oscillation results for neutrinos and antineutrinos in the MINOS experiment and show the relevance of the high energy part of the spectrum measured at MINOS.Comment: PDFLaTeX file using JHEP3 class, 25 pages, 7 figures included. Accepted for publication in JHE

    Direct determination of the solar neutrino fluxes from solar neutrino data

    Get PDF
    We determine the solar neutrino fluxes from a global analysis of the solar and terrestrial neutrino data in the framework of three-neutrino mixing. Using a Bayesian approach we reconstruct the posterior probability distribution function for the eight normalization parameters of the solar neutrino fluxes plus the relevant masses and mixing, with and without imposing the luminosity constraint. This is done by means of a Markov Chain Monte Carlo employing the Metropolis-Hastings algorithm. We also describe how these results can be applied to test the predictions of the Standard Solar Models. Our results show that, at present, both models with low and high metallicity can describe the data with good statistical agreement.Comment: 24 pages, 1 table, 7 figures. Acknowledgments correcte

    Theta_13: phenomenology, present status and prospect

    Full text link
    The leptonic mixing angle theta_13 is currently a high-priority topic in the field of neutrino physics, with five experiments under way, searching for neutrino oscillations induced by this angle. We review the phenomenology of theta_13 and discuss the information from present global oscillation data. A description of the upcoming reactor and accelerator experiments searching for a non-zero value of theta_13 is given, and we evaluate the sensitivity reach within the next few years.Comment: Topical review, 55 pages, 23 figures, v2: various minor improvements, references added, new section 6, matches version to appear in J. Phys.

    Publisher’s Note: High intensity neutrino oscillation facilities in Europe [Phys. Rev. Accel. Beams16, 021002 (2013)]

    No full text

    Neutrino mass and mixing with discrete symmetry

    No full text
    corecore