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Universitat de Barcelona, 647 Diagonal,

E-08028 Barcelona, Spain

Abstract

We determine the solar neutrino fluxes from a global analysis of the solar and terrestrial neu-

trino data in the framework of three-neutrino mixing. Using a Bayesian approach we reconstruct

the posterior probability distribution function for the eight normalization parameters of the solar

neutrino fluxes plus the relevant masses and mixing with and without imposing the luminosity

constraint. This is done by means of a Markov Chain Monte Carlo employing the Metropolis-

Hastings algorithm. We also describe how these results can be applied to test the predictions of

the Standard Solar Models. Our results show that, at present, both models with low and high

metallicity can describe the data with good statistical global agreement.
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I. INTRODUCTION

The idea that the Sun generates power through nuclear fusion in its core was first sug-

gested in 1919 by Sir Arthur Eddington, who pointed out that the nuclear energy stored in

the Sun could explain the apparent age of the Solar System. In 1939, Hans Bethe described

in an epochal paper [1] two nuclear fusion mechanisms by which main sequence stars like

the Sun could produce the energy necessary to power their observed luminosities. The two

mechanisms have become known as the pp-chain and the CNO-cycle [2]. For both chains the

basic energy source is the burning of four protons to form an alpha particle, two positrons

and two neutrinos. In the pp-chain fusion reactions among elements lighter than A = 8

produce a characteristic set of neutrino fluxes, whose spectral energy shapes are known but

whose fluxes must be calculated with a detailed solar model. In the CNO-cycle the 12C acts

as a catalyst, while the 13N and 15O beta decays provide the primary source of neutrinos.

In order to precisely determine the rates of the different reactions in the two chains

which are responsible for the final neutrino fluxes and their energy spectrum, a detailed

knowledge of the Sun and its evolution is needed. Standard Solar Models (SSM’s) [3, 4,

5, 6, 7, 8, 9] describe the properties of the Sun and its evolution after entering the main

sequence. The models are based on a set of observational parameters: the surface luminosity

of the Sun, its age, radius, and mass, and on several basic assumptions: spherical symmetry,

hydrostatic and thermal equilibrium, equation of state, and present surface abundances of

heavy elements. Over the past five decades, the solar models were steadily refined as the

result of increased observational and experimental information about the input parameters

(such as nuclear reaction rates and the surface abundances of different elements), more

accurate calculations of constituent quantities (such as radiative opacity and equation of

state), the inclusion of new physical effects (such as element diffusion), and the development

of faster computers and more precise stellar evolution codes.

Despite the progress of the theory, only neutrinos, with their extremely small interaction

cross sections, can enable us to see into the interior of a star and thus verify directly our un-

derstanding of the Sun [10]. Indeed from the earliest days of solar neutrino research this test

was a primary goal of the solar neutrino experiments. However this task was made difficult

by the increasing discrepancy between the predictions of the SSM’s and the solar neutrino

observations. This so-called “solar neutrino problem” [11, 12] was finally solved by the mod-

ification of the Standard Model of particle physics with the inclusion of neutrino masses and

mixing which allowed for flavor conversion in the leptonic sector. As a consequence neu-

trino can change their flavor from the production point in the Sun to their detection in the

Earth, and the flavor transition probability is energy dependent [13, 14]. This mechanism is

known as the LMA-MSW solution to the solar neutrino problem, and affects both the overall

number of events in solar neutrino experiments and the relative contribution expected from

the different components of the solar neutrino spectrum. Because of these complications,

it was necessary to assume the SSM predictions for all the solar neutrino fluxes and their
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uncertainties in order to determine reasonably constrained values for neutrino masses and

mixing. The upcoming of the real-time experiments Super-Kamiokande and SNO and the

independent determination of the flavor oscillation probability using reactor antineutrinos

at KamLAND opened up the possibility of extracting the solar neutrino fluxes and their

uncertainties directly from the data [9, 15, 16, 17, 18, 19]. In general, in these works some

set of simplifying assumptions were made in order to reduce the number of free parameters

to be determined.

In parallel to the increased precision of the SSM-independent determination of the neu-

trino flavor parameters, a new puzzle has emerged in the consistency of SSM’s [20]. Till

recently SSM’s have had notable successes in predicting other observations. In particular,

quantities measured by helioseismology such as the radial distributions of sound speeds and

densities [5, 6, 7, 8] showed good agreement with the predictions of the SSM calculations and

provided accurate information on the solar interior. A key element to this agreement were

the input values of abundances of heavy elements on the surface of Sun [21]. However, recent

detailed determination of the abundances of the heavy elements on the solar surface lead to

lower values [22, 23]. A SSM which incorporates such lower metallicities fails at explaining

the helioseismological observations [20]. Changes in the Sun modeling, in particular of the

less known convective zone, are not able to account for this discrepancy [24].

So far there has not been a successful solution of this puzzle. Thus the situation is that

at present, there is no fully consistent SSM. This lead to the construction of two different

sets of SSM’s, one (labeled “GS”) based on the older solar abundances [21] leading to high

metallicity, and one (labeled “AGS”) assuming lower metallicity as inferred from more recent

determination of the solar abundances [22, 23]. In Ref. [9] the solar fluxes from such two

models, BPS08(GS) and BPS08(AGS), were detailed, obtained with updated versions of the

solar model calculations in Ref. [8]. In a very recent work [25] an update of the BPS08(AGS)

solar model (now relabeled “AGSS09”) has been constructed using the latest determination

of the compositions [23] as well as some improvement in the equation of state. For what

concerns the overall normalization of solar neutrino fluxes, the predictions of this new model

are very close to those of BPS08(AGS).

In this work we perform a solar model independent analysis of the solar and terrestrial

neutrino data in the framework of three-neutrino masses and mixing. The aim of the analysis

is to simultaneously determine the flavor parameters and all the solar neutrino fluxes with

a minimum set of theoretical priors. In Sec. II we present the method employed, the data

included in the analysis and the minimum set of physical assumptions used in this study.

The results of the analysis are given in Sec. III, where we show the reconstructed posterior

probability distribution function for the eight normalization parameters of the solar neutrino

fluxes. The effect of the luminosity constraint [26] on these results is explicitly shown. We

also discuss the role of the Borexino results and its potential for improvement. We use the

results of this analysis to statistically test to what degree the present solar neutrino data

can discriminate between the two SSM’s. Finally in Sec. IV we summarize our conclusions.
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II. DATA ANALYSIS

In the analysis of solar neutrino experiments we include the total rates from the ra-

diochemical experiments, Chlorine [27], Gallex/GNO [28] and SAGE [28]. For real-time

experiments in the energy range of 8B neutrinos we include the 44 data points of the elec-

tron scattering (ES) Super-Kamiokande phase I (SK-I) energy-zenith spectrum [29], the 34

data points of the day-night spectrum from SNO-I [30], the separate day and night rates for

neutral current (NC) and ES events and the day-night energy-spectrum for charge current

(CC) events from SNO-II (a total of 38 data points) [31], the three rates for CC, ES and NC

from SNO-III [32], and the 7 points of the high-energy spectrum from the 246 live days of

Borexino [33] (we denote this last data set as Borexino-HE).1 Finally, we include the main

set of the 192 days of Borexino data (which we denote as Borexino-LE) [35] in two different

forms as described in Sec. III A and detailed in Appendix A. In brief, in one analysis we use

the total event rates from 7Be neutrinos as extracted by the Borexino collaboration from

their energy spectrum. In the other we fit ourselves the Borexino energy spectrum in the

energy range above 365 keV, corresponding to a total of 160 data points.

In the framework of three neutrino masses and mixing the expected values for these solar

neutrino observables depend on the parameters ∆m2
21, θ12, and θ13, and on the normalizations

of the eight solar fluxes.

Besides solar experiments, we also include the latest results from the long baseline reactor

experiment KamLAND [36, 37], which in the framework of three neutrino mixing also yield

information on the parameters ∆m2
21, θ12, and θ13. In addition, we include the information

on θ13 obtained after marginalizing over ∆m2
31 and θ23 the results from the complete SK-I

and SK-II atmospheric neutrino data sets (see the Appendix of Ref. [37] for full details on our

analysis), the CHOOZ reactor experiment [38], K2K [39], the latest Minos νµ disappearance

data corresponding to an exposure of 3.4 × 1020 p.o.t. [40], and the first Minos νµ → νe
appearance data presented in Ref. [41]. Details of the oscillation analysis of these observables

will be presented elsewhere [42].

In what follows for convenience we will use as normalization parameters for the solar

fluxes the reduced quantities:

fi =
Φi

Φ
BPS08(GS)
i

(1)

with i = pp, 7Be, pep, 13N, 15O, 17F, 8B, and hep.

1 We have not included here the very recent results on the low energy threshold analysis of the combined
SNO phase I and phase II [34]. These results provide information on the 8B and hep fluxes and show
no major difference with the results from their previous analysis, hence we expect that they will have no
important impact on the results of the global analysis here presented. In particular we notice that their
best fit determination of the 8B flux as well as of the oscillation parameters are in perfect agreement with
our results.
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With this the theoretical predictions for the relevant observables (after marginalizing over

θ23 and ∆m2
23) depend on 11 parameters: the three relevant oscillation parameters ∆m2

21,

θ12, θ13 and the 8 reduced solar fluxes fi.

With the data from the different data samples (D) and the theoretical predictions for

them in terms of the relevant parameters ~ω = (∆m2
21, θ12, θ13, fpp, . . . , fhep) we build the

corresponding likelihood function

L(D|~ω) =
1

N
exp

[
−1

2
χ2(D|~ω)

]
(2)

where N is a normalization factor.

In Bayesian statistics our knowledge of ~ω is summarized by the posterior probability

distribution function (p.d.f.)

p(~ω|D,P) =
L(D|~ω) π(~ω|P)∫
L(D|~ω′) π(~ω′|P) d~ω′

. (3)

π(~ω|P) is the prior probability density for the parameters. In our model independent analysis

we assume a uniform prior probability over which we impose the following set of constraints

to ensure consistency in the pp-chain and CNO-cycle, as well as some relations from nuclear

physics:

• The fluxes must be positive:

fi ≥ 0 . (4)

• The physical requirement that the number of nuclear reactions that terminate the

pp-chain does not exceed the number of initiating nuclear reactions implies [26, 43]:

Φ7Be + Φ8B ≤ Φpp + Φpep

⇒ 8.49× 10−2f7Be + 9.95× 10−5f8B ≤ fpp + 2.36× 10−3fpep (5)

• The 14N(p, γ)15O reaction being the slowest process in the main branch of the CNO-

cycle implies [43]

Φ15O ≤ Φ13N ⇒ f15O ≤ 1.34f13N . (6)

We have also imposed the CNO-II branch to be subdominant

Φ17F ≤ Φ15O ⇒ f17F ≤ 37f15O . (7)

• The ratio of the pep neutrino flux to the pp neutrino flux is fixed to high accuracy

because they have the same nuclear matrix element. We have set the ratio equal to

the average of the one in BPSO8(GS) and in BPSO8(AGS) with uncertainty given by

the difference between the values in the two models

fpep

fpp

= 1.008± 0.010 . (8)
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Flux αi (10 MeV) ai

pp 1.30987 0.7001
7Be 1.26008 0.05946

pep 1.19193 0.001654
13N 0.34577 0.003377
15O 2.15706 0.002521
17F 0.2363 1.13E-07
8B 0.66305 0.0000696

hep 0.37370 0.926E-07

TABLE I: The energy provided to the star by nuclear fusion reactions associated with the ith

neutrino flux, αi, and the ratio of the ith neutrino flux of the BPS08(GS) model to the characteristic

solar photon flux, ai (adapted from Ref. [26]).

The number of independent fluxes is reduced when imposing the so-called ‘luminosity

constraint’, i.e., the requirement that the sum of the thermal energy generation rates asso-

ciated with each of the solar neutrino fluxes be equal to the solar luminosity [44]. In terms

of the reduced fluxes it can be written as:

1 =
8∑
i=1

βifi with βi ≡
Li�
L�

=
( αi

10 MeV

)
ai (9)

where βi is the fractional contribution to the total solar luminosity of the nuclear reactions

responsible for the production of the Φ
BPS08(GS)
i neutrino flux. Here the constant αi is

the energy provided to the star by the nuclear fusion reactions associated with the ith

neutrino flux, and ai is the ratio of this flux to the characteristic solar photon flux defined

by L�/[4π(A.U.)2(10 MeV)]. Ref. [26] presents a detailed derivation of Eq. (9) and the

numerical values for the coefficients αi and ai which we reproduce for convenience in table I.

The analysis performed incorporating the priors in Eqs. (4)-(9) will be labeled as P = L�

and named “analysis with luminosity constraint”. When only Eqs. (4)-(8) are imposed

we will name it “analysis without luminosity constraint” P = /L�. Following standard

techniques we reconstruct the posterior p.d.f. Eq. (3) using a Monte-Carlo algorithm; full

details of our approach are given in Appendix B.

III. RESULTS

Our results for the analysis with luminosity constraint are displayed in Fig. 1 where we

show the marginalized one-dimensional probability distributions p(fi|D, L�) for the eight

solar neutrino fluxes as well as the 90% and 99% CL two-dimensional allowed regions. The
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FIG. 1: Constraints from our global analysis on the solar neutrino fluxes. The curves on the

most right panels show the marginalized one-dimensional probability distributions. The rest of the

panels show the 90% and 99% CL two-dimensional credibility regions (see text for details). For

comparison we also show the one-dimensional probability distributions before the inclusion of the

Borexino spectral data.
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corresponding ranges at 1σ [99% CL] on the oscillation parameters are:

∆m2
21 = 7.6± 0.2 [±0.5]× 10−5 eV2 ,

sin2 θ12 = 0.33± 0.02 [±0.05] ,

sin2 θ13 = 0.02± 0.012 [+0.03
−0.02] ,

(10)

while for the solar neutrino fluxes are:

fpp = 0.99+0.010
−0.009 [+0.023

−0.030] , Φpp = 5.91+0.057
−0.063[

+0.14
−0.16]× 1010 cm−2 s−1 ,

f7Be = 1.00+0.10
−0.09 [+0.25

−0.21] , Φ7Be = 5.08+0.52
−0.43 [+1.3

−1.0]× 109 cm−2 s−1 ,

fpep = 1.00± 0.014 [±0.04] , Φpep = 1.41+0.019
−0.020 [+0.054

−0.057]× 108 cm−2 s−1 ,

f13N = 2.7+1.7
−1.2 [+5.6

−2.4] , Φ13N = 7.8+5.0
−3.4 [+16

−7.0]× 108 cm−2 s−1 ,

f15O = 1.8± 0.9 [+2.2
−1.8] , Φ15O = 4.0+1.8

−1.9 [+4.8
−3.8]× 108 cm−2 s−1 ,

f17F ≤ 32 [72] , Φ17F ≤ 5.9 [43]× 107 cm−2 s−1 ,

f8B = 0.85± 0.03 [±0.08] , Φ8B = 5.02+0.18
−0.17 [+0.45

−0.42]× 106 cm−2 s−1 ,

fhep = 1.7+1.3
−1.4 [+3.8

−1.7] , Φhep = 1.3± 1.0 [+3.0
−1.3]× 104 cm−2 s−1 .

(11)

We have also performed a Gaussian fit to the two-dimensional p.d.f. for the eight fluxes.

We find that it can be best described by a Gaussian distribution with covariance matrix

obtained by symmetrizing the 1σ ranges above and with error correlation matrix

fpp f7Be fpep f13N f15O f17F f8B fhep

fpp 1 −0.81 0.74 −0.28 −0.64 −0.26 0.06 0.00

f7Be 1 −0.58 −0.10 0.10 0.12 −0.05 0.00

fpep 1 −0.22 −0.49 −0.20 0.04 0.01

f13N 1 0.31 0.06 −0.02 0.00

f15O 1 0.30 −0.03 0.00

f17F 1 −0.02 0.00

f8B 1 −0.04

fhep 1

(12)

As seen in the Fig. 1 and in Eq. (12) the most important correlation appears between the

pp and pep fluxes as expected from the relation (12). The correlation between the pp (and

pep) and 7Be flux is directly dictated by the luminosity constraint (see comparison with

Fig. 2). The CNO fluxes are also correlated among themselves due to their similar energy

spectrum. As a matter of fact the 15O and 17F fluxes are experimentally indistinguishable

which implies that indeed what it is being constrained is their sum. Indeed equivalent

results are obtained if only the sum is fitted. The, in principle, total anticorrelation is

broken because of the positivity condition, (4), as well as the constraint (7).

These results imply the following share of the energy production in the pp-chain and the

CNO-cycle

Lpp-chain

L�
= 0.986+0.005

−0.006 [+0.011
−0.014] ,

LCNO

L�
= 0.014+0.006

−0.005 [+0.014
−0.011] . (13)
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FIG. 2: Same as Fig. 1 but without the luminosity constraint, Eq. (9).

These are in perfect agreement with the SSM’s which predict that LCNO/L� ≤ 1% at the

3σ level.

In order to check the consistency of our results we have performed the same analysis with-

out imposing the luminosity constraint, Eq. (9). The corresponding results for p(fi|D, /L�)

and the two-dimensional allowed regions are shown in Fig. 2. As expected, it is the pp
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flux the one which is mostly affected by the release of this constraint. This is so because,

as seen in Table I, it is the pp reaction which gives most contribution to the solar energy

production. Imposing the luminosity constraint on the pp flux only, already implies that

this flux cannot exceed by than 9% the SSM prediction. Conversely releasing this constraint

allow for a much larger pp flux. The pep flux is also severely affected as a consequence of

the strong correlation with the pp flux, Eq. (8). In a smaller scale the CNO fluxes are also

affected. This is mostly an indirect effect due to the modified contribution of the pp and

pep fluxes to Gallium and Chlorine experiments which leads to a modification of the allowed

contribution of the CNO fluxes to these experiments. Thus in this case we get:

fpp = fpep = 0.98+0.16
−0.15 [+0.47

−0.40] ,

f7Be = 1.01+0.1
−0.09 [+0.27

−0.22] ,

f13N = 2.7+1.8
−1.3 [+5.7

−2.5] ,

f15O = 1.9± 1 [+2.3
−1.9] ,

f17F ≤ 34[79] .

(14)

The determination of the 8B and hep fluxes (as well as the oscillation parameters) is basically

unaffected by the luminosity constraint.

Indeed the idea that the Sun shines because of nuclear fusion reactions can be tested

accurately by comparing the observed photon luminosity of the Sun with the luminosity

inferred from measurements of solar neutrino fluxes. We find that, without imposing the

luminosity constraint the energy production in the pp-chain and the CNO-cycle are given

by:
Lpp-chain

L�
= 0.98+0.15

−0.14 [±0.40] ,
LCNO

L�
= 0.015+0.005

−0.007 [+0.013
−0.014] . (15)

Comparing Eqs. (13) and (15) we see that the imposition of the luminosity constraint has

limited impact on the bound on the amount of energy produced in the CNO-cycle while,

as discussed above, the amount of energy in the pp-chain can now significantly exceed the

total allowed by the luminosity constraint. Altogether we find that the present constraint

for the ratio of the neutrino-inferred solar luminosity, L�(neutrino-inferred), to the photon

luminosity, L� is:
L�(neutrino-inferred)

L�
= 1.00± 0.14[+0.37

−0.34] . (16)

Thus we find that, at present, the neutrino inferred luminosity perfectly agrees with the one

directly determined and this agreement is known with a 1σ uncertainty of 15%.

A. The Role and Potential of Borexino

As seen in Figs. 1 and 2 the inclusion of Borexino has a very important impact in the

determination of the 7Be, pep, the CNO, and indirectly the pp fluxes. As mentioned above
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and described in Appendix A, in our analysis we have fitted the 160 data points of the

Borexino energy spectrum in the 365–2000 keV energy range, leaving as free parameters the

normalization of the the 11C, 14C, 210Bi and 85Kr backgrounds, the three relevant oscillation

parameters, and the normalization of all the solar neutrino fluxes. In contrast, the Borexino

collaboration fits the spectrum in the full energy range from ∼ 200–2000 keV, and allows

for free normalizations of the 11C, 10C, 210Bi+CNO and 85Kr backgrounds as well as 14C

(which introduces an overwhelming background but is only relevant for events below 250 keV,

hence it does not contribute to our analysis). Besides the normalization of these background

components, only the 7Be flux normalization is fitted to the data, and no direct information

on the normalization of the other solar fluxes is extracted. In particular, the CNO fluxes

are added to the 210Bi background and fitted as a unique “background”, while the other

solar fluxes are fixed to the BPS08(GS) SSM and the oscillation parameters are fixed to

the best fit point of the global pre-Borexino analysis. With this procedure they determine

the interaction rate for the 0.862 MeV 7Be to be 49 ± 3stat ± 4sys, which corresponds to

f7Be = 1.02±0.1. Given the precision of the data and the energy spectrum of the irreducible

backgrounds, their procedure is perfectly acceptable for the purpose of extracting the 7Be

normalization alone. However, in this work we are interested in testing the full set of SSM

fluxes, not just 7Be, and to this aim the consistent procedure is to allow for independent

normalizations of all the solar fluxes.

In order to illustrate the impact of these two different approaches on the determination of

the SSM fluxes, we have repeated our analysis using as unique data input from Borexino-LE

the total interaction rate for 7Be neutrinos quoted by the collaboration. The results are

shown in Fig. 3. As seen in the figure the constraints imposed on the 7Be flux after the

inclusion of Borexino are basically the same, irrespective of whether one includes the full

Borexino energy spectrum in the range 365–2000 keV or just the total 7Be event rate ex-

tracted by the Borexino collaboration. However, the best fit and allowed ranges for the CNO

fluxes are not the same. This proves that despite the unknown level 210Bi contamination the

Borexino spectral data can still provide useful information on CNO fluxes; when using only

the total 7Be event rate this information is lost and the constraints on CNO arise exclusively

from the Gallium and Chlorine experiments.

As shown in Fig. 3, the inclusion of the complete Borexino-LE spectrum leads to an

improvement (albeit not very significant) of the determination of the 13N flux. Without

Borexino this flux is mostly (and poorly) constrained by the Gallium experiment, and in-

cluding the additional information from Borexino positively adds to its knowledge. We

notice, however, that the best fit value of 13N flux in either analysis is always higher than

the prediction of any of the SSM’s (but fully compatible at better than 1.5σ). This behavior

is driven by the Gallium rate which is slightly higher than expected in any of the SSM’s

within the framework of three neutrino oscillations. A higher best fit value of 13N can easily

accommodate this observation without conflicting with any of the other experiments nor

with the observed spectrum at Borexino. On the contrary, this is not the case for the 15O

11



FIG. 3: Marginalized one-dimensional probability distributions for the fluxes contributing to

Borexino-LE. The full line shows the determination obtained by fitting the Borexino spectrum

data as described in Appendix A. The dashed-dotted line shows what the results would be if in-

stead one had used the Borexino result for the extracted interaction rate of the 0.862 MeV 7Be

neutrinos. The dotted line represents the precision obtainable with the simulated “ideal” spectrum

as described in Sec. III A.
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flux. Adding the information from Borexino-LE spectrum leads to a (also small) worsening

of the precision in the determination of this flux. We trace this apparently counter-intuitive

result to the existing tension between the (low) Chlorine rate and the predicted rate within

the framework of three neutrino oscillations. As a consequence Chlorine pushes towards

lower values of the 15O while we find that the spectrum of Borexino-LE prefers a higher

amount of 15O. When only the total event rate of 7Be is used in the fit, the extracted 15O

flux is mostly driven by the Chlorine result. When including the Borexino-LE spectrum the

tension results into a higher best fit for the 15O flux but a worsening on the precision.

Given the fact that the CNO fluxes are those most different in between the two solar

models, it is interesting to explore whether this tension can be resolved with future Borexino

data and to what degree the CNO and pep fluxes can be better determined. Besides the

accumulation of more statistics, Borexino in the near future aims at reducing the systematic

uncertainties with the deployment of calibration sources in the detector [35]. Furthermore

ideally if the 11C background could be statistically subtracted, the pep and CNO fluxes

could be directly accessed. In order to illustrate the potential of this possibility we have

simulated and “ideal” spectrum of 85 bins in the energy range 365–1238 keV according to

the expectations from the central values for the BPS08(GS) fluxes and the best fit point of

oscillation and assuming that the 11C has been fully subtracted while the other backgrounds

are added under the same assumptions than in the present Borexino analysis. We have

assumed double statistics and a reduction by a factor 3 of the systematic uncertainties.

The results of the fit including this simulated spectrum are given in Fig. 3. As seen in the

figure with this ideal experiment the precision of all the fluxes can be substantially improved

(though for the CNO fluxes the precision is still far below the present uncertainties of the

SSM’s) with the exception of the 13N flux. This is a consequence of the tension between the

higher value of 13N preferred by the Gallium experiments and the SSM value used in the

simulated spectrum. If we had simulated data corresponding to a higher value of 13N flux,

the precision in the determination of this flux would have also improved.

B. Comparison with the Standard Solar Model(s)

In Fig. 4 we show the marginalized one-dimensional probability distributions for the best

determined solar fluxes in our analysis as compared to the predictions for the two SSM’s in

Ref. [9].

In order to statistically compare our results with the SSM’s predictions we perform a

significance test. In doing so we start by constructing a posterior probability distribution

function for the solar fluxes as well as for a SSM central values, as the probability distribution

from the data subject to a SSM model prior probability distribution function defined as

p(~f, ~̄fSSM|D, SSM) =
L(D|~f) π(~f, ~̄fSSM |SSM)∫

L(D|~f) π(~f, ~̄fSSM |SSM) d~f d ~̄fSSM

. (17)
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FIG. 4: Marginalized one-dimensional probability distributions for the best determined solar fluxes

in our analysis as compared to the predictions for the two SSM’s in Ref. [9].

where

− 2 ln
[
π(~f, ~̄fSSM|SSM)

]
=
∑
i,j

(fi − f̄i,SSM)V −1
SSM,ij(fj − f̄j,SSM) , (18)

and VSSM,ij is the SSM covariance matrix for the models. We build the covariance ma-

trix from arbitrary models by interpolation the covariance matrix for the BPS08(GS) and

BPS08(AGS) models given in Ref. [9, 45]. Since the covariance matrices for those models

are very similar the results are not sensitive to this assumption. In order to improve over

this approximation one would need a continuous model dependence of the flux covariance

matrix which is currently unavailable.

The posterior probability distribution for a SSM characterized by the central values and
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FIG. 5: Probability distribution function g(t) (full line, see text for details). For comparison we

show the corresponding distribution for a χ2 p.d.f. with 8 degrees of freedom (dashed line).

that covariance matrix, subject to the constrained imposed by the Data is then

p( ~̄fSSM|D) =

∫
p(~f, ~̄fSSM|D, SSM) d ~̄f (19)

From p( ~̄fSSM|D) we define a probability distribution function for the statistics t as

g(t) =

∫
p( ~̄fSSM|D) δ

[
t+ 2 ln

(
p( ~̄fSSM|D)

)]
d ~̄fSSM (20)

By definition g(t) is a function normalized to 1 in the interval tmin ≤ t ≤ ∞. In Fig. 5

we plot the function g(t). For comparison we show the corresponding distribution for a χ2

p.d.f. with 8 degrees of freedom (dashed line).

The significance of the agreement between the data and what is expected under the

assumption of each of the models is quantified by the P agr value defined as the probability

to find t in the region of equal or larger (lesser) compatibility with the data than the level

of compatibility observed with each of the models

P agr
GS(AGS) =

∫ tmax

tGS(AGS)

g(t) dt (21)
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where tGS(AGS) is the value of the statistic obtained for the central value fluxes of the specific

models:

tGS(AGS) = −2 ln
[
p( ~̄fGS(AGS)|D)

]
. (22)

We find that the GS model has a lower t, tGS = 8.5, while tAGS = 11.0. With the probability

distribution g(t) shown in Fig. 5 this corresponds to P agr
GS = 43% and P agr

AGS = 20%.

For comparison we have also constructed a χ2 function comparing the best fit values of

the fluxes in each of the models with those obtained in the analysis without the SSM priors

and within the uncertainties given by the combined covariance matrix

χ2 =
∑
ij

(f̄GS(AGS),i − f̄D
i )
[
VGS(AGS) + VD

]−1

ij
(f̄GS(AGS),j − f̄D

j ) (23)

where VD is the covariance matrix obtained by the best Gaussian approximation to the

p(fi|D, L�) probability distribution function Eq. (12) and f̄D
j are the best fit fluxes from

the data analysis without any SSM prior, Eq. (11). Should the distribution p(~f |D, L�) be

exactly Gaussian, both test would be equivalent. We find that this test maintains the better

fit for the GS model χ2
GS = 5.2 (P agr

GS = 74%) and χ2
GS = 5.7 (P agr

AGS = 68%) but yields higher

probability for either model.

In other words while the fit shows a somehow better agreement with the model with higher

metallicities the statistical difference is not significant. Besides the precision of the data, we

notice that while the measurements of SNO and SK favor a lower 8B flux as predicted by

the low metallicity models, the determination of the 7Be in Borexino and the corresponding

determination of the pp flux from the luminosity constraint show better agreement with the

GS predictions.

IV. SUMMARY

We have performed a solar model independent analysis of the solar and terrestrial neutrino

data in the framework of three-neutrino oscillations. We have done so following a Bayesian

approach in terms of a Markov Chain Monte Carlo using the Metropolis-Hastings algorithm.

This allows for determination of the eleven-dimensional probability distribution function

consistently incorporating the required set of theoretical priors.

Our results obtained when incorporating the requirement that the sum of the thermal

energy generation rates associated with each of the solar neutrino fluxes be equal to the solar

luminosity are given in Eq. (11) and Fig. 1. We have also tested this luminosity constraint

with results given in Eq. (14) and Fig. 2. We find that at present the neutrino inferred

luminosity perfectly agrees with the one directly determined and it is known with a 1σ

uncertainty of 15%. The analysis also allows for testing the fractional production of energy

in the pp-chain and the CNO-cycle. We find that the total amount of the solar luminosity

produced in the CNO-cycle is bounded to be LCNO/L� < 2.8% at 99% CL.
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Finally we have described the statistical test which can be performed to with these results

to seed some light on the so-called solar composition problem which at the present arises in

the construction of the solar standard model. We find that while the fit shows a somehow

better agreement with the model with higher metallicities the statistical difference is not

very significant. Besides the precision of the data, this result is also due to the fact that while

the measurements of SNO and SK favor a lower 8B flux as predicted by the low metallicity

models, the determination of the 7Be in Borexino and the corresponding determination of

the pp flux from the luminosity constraint show better agreement with the predictions from

the model incorporating a higher metallicity.
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APPENDIX A: ANALYSIS OF BOREXINO SPECTRA

In our analysis of Borexino we include both the low-energy (LE) data presented in

Ref. [35], which are crucial for the reconstruction of the 7Be line, as well as the high-energy

(HE) data discussed in Ref. [33], which are mostly sensitive to the 8B flux. For the low-

energy part we extracted the 180 experimental data points and the corresponding statistical

uncertainties from Fig. 2 of Ref. [35], checking explicitly that the statistical error σstat
b is

just the square root of the number of events N ex
b in each bin b (except in the region where

statistical α’s subtraction had been performed). Similarly, for the high-energy part we ex-

tracted the 6 experimental data points and statistical uncertainties from Fig. 3 of Ref. [33].

For both data sets the theoretical prediction N th
b for the bin b is calculated as follows:

N th
b (~ω, ~ξ) = nelT

run
b

∑
α

∫
dΦdet

α

dEν
(Eν |~ω)

dσα
dTe

(Eν , Te)Rb(Te|~ξ) dEν +Nbkg
b (~ξ) (A1)

where ~ω describes both the neutrino oscillation parameters and the eight solar flux normal-

izations, and ~ξ is a set of variables parametrizing the systematic uncertainties as required

by the “pulls” approach to χ2 calculation. Here nel is the number of electron targets in a

fiducial mass of 78.5 tons with an electron/nucleon ratio of 11/20 for pseudocumene, and

T run
b is the total data-taking time which we set to 192 and 246 live days for LE and HE

data, respectively. In the previous formula dσα/dTe is the elastic scattering differential cross-

section for neutrinos of type α ∈ {e, µ, τ}, and dΦdet
α /dEν is the corresponding flux of solar
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neutrinos at the detector – hence it incorporates the neutrino oscillation probabilities. The

detector response function Rb(Te|~ξ) depends on the true electron kinetic energy Te and on

the three systematic variables ξvol, ξscl and ξres:

Rb(Te|~ξ) = (1 + πvol ξvol)

∫ Tmax
b (1+πb

scl ξscl)

Tmin
b (1+πb

scl ξscl)

Gauss [Te − T ′, σT (1 + πres ξres)] dT
′ (A2)

where Gauss(x, σ) ≡ exp [−x2/2σ2] /
√

2πσ is the normal distribution function, while Tmin
b

and Tmax
b are the boundaries of the reconstructed electron kinetic energy T ′ in the bin b. Note

that we assumed an energy resolution σT/Te = 6%/
√
Te [MeV], rather than the “official”

value 5%
/√

Te [MeV] quoted by the collaboration, since our choice lead to a perfect match

of the 7Be line shown in Fig. 2 of Ref. [35]. We verified that also the other solar fluxes

plotted in Ref. [46] are carefully reproduced. As for the effects introduced by systematic

uncertainties, we assumed πvol = 6% for the fiducial mass ratio uncertainty, πbscl = 2.4%

(1%) for the energy scale uncertainty in LE (HE) data, and an arbitrary πres = 10% for the

energy resolution uncertainty.

The backgrounds Nbkg
b (~ξ) which appear in Eq. (A1) only affect the low-energy data, and

are not included in the calculation of the high-energy event rates. The 10C, 11C, 14C and 85Kr

background shapes were taken from Fig. 2 of Ref. [35], whereas the 238U, 214Pb and 210Bi

were extracted from slide 7 of Ref. [46]. We explicitly verified that with the normalizations

as inferred in the figures the sum of all these backgrounds with the expected SSM fluxes

precisely reproduces the “Fit” line shown in Fig. 2 of Ref. [35]. Note that because of the

overwhelming 14C at energies below ∼ 250 keV our fit in this energy region is never good.

We do not know if this is due to loss of numerical precision in our extraction of the 14C shape

or to the fact that there are additional free parameters to be fitted for this background. In

any case, in order to avoid biasing our analysis by the low quality description on these data

points we use only the 160 points of the spectrum above 365 keV. Hence the 14C background

is irrelevant. Following the procedure outlined in Ref. [35] the normalization of the 238U and
214Pb backgrounds are assumed to be known, whereas the normalizations of the 85Kr, 210Bi,
11C and 10C backgrounds are introduced as free parameters and fitted against the data

– taking care to ensure their positivity. Hence:

Nbkg
b (~ξ) = NU238

b +NPb214
b +NKr85

b ξKr85 +NBi210
b ξBi210 +NC11

b ξC11 +NC10
b ξC10 . (A3)

The χ2(~ω) function is constructed in the usual way in the context of the pull method, by

introducing standard penalties for the ~ξ variables (except for those parametrizing the free

normalizations of the backgrounds) and marginalizing over them:

χ2(~ω) = min
~ξ

∑
b

[
N th
b (~ω, ~ξ)−N ex

b

σstat
b

]2

+ ξ2
vol + ξ2

scl + ξ2
res

 . (A4)

As a test of our procedure we first perform a fit under the same assumptions as Ref. [35].

This is, besides the background normalizations we only leave the 7Be flux normalization
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FIG. 6: Spectrum for the best fit point of our spectral fit to the Borexino-LE data in the energy

region between 350–2000 KeV under the assumptions described in the Appendix (left) and ∆χ2 as

a function of the 7Be flux for the different test analysis of Borexino data (right).

to be fitted to the data. The other solar fluxes are fixed to the BPS08(GS) SSM and the

oscillation parameters are fixed to the best fit point of the global pre-Borexino analysis.

The result of this test is shown in Fig. 6. Comparing the left panel with Fig. 2 of Ref. [35]

one observes the perfect agreement in the best fit 7Be flux spectra. Furthermore in the

right panel we plot the ∆χ2 for this test fit as a function of f7Be. As seen in the figure our

procedure leads to a determination of the 7Be normalization in very good agreement with

that obtained by Borexino f7Be = 1.02± 0.1. We also show in the right panel the curve for

the combined analysis of Borexino-LE and Borexino-HE data under the same assumptions.

As seen in the figure, the inclusion of the Borexino-HE tends to push the extracted value of

f7Be towards a slightly higher value. This is due to the assumed correlation of the systematic

uncertainties (in particular the one associated with the total fiducial volume) between LE

and the HE. This small effect is diluted once both data sets are included in the global fit

and the results are independent of the degree of correlation assumed between the systematic

errors.

APPENDIX B: DETAILS OF THE MARKOV CHAIN MONTE CARLO

In this analysis we’ve used the Metropolis-Hasting algorithm including the adapting for

the kernel function to increase the efficiency. The algorithm is defined as follows:

1. Given a parameter set ~ω, a new value ~ω′ is generated according a the transition kernel
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q(~ω, ~ω′).2

2. With ~ω and ~ω′ we compute the value:

h = min

(
1,
L(D|~ω′) π(~ω′|P)

L(D|~ω)π(~ω′|P)

)
. (B1)

3. A random number 0 ≤ r ≤ 1 is generated and if r ≤ h, ~ω′ is accepted in the chain.

4. Go back to step (1) starting with ~ω′ if it has been accepted or again with ~ω if not.

All the points accepted in this algorithm constitute the Markov Monte-Carlo Chain {~ωα}
with α = 1, . . . , Ntot, where Ntot is the total number of points in the chain. The method

ensures that, once convergence has been reached, the chain take values over the parameter

space with frequency proportional to the posterior p.d.f.

Technically in order to reconstruct the posterior p.d.f. from the chain we discretize the

parameter space by dividing in ni subdivisions, ∆ki
i of length `ki

i (with 1 ≤ ki < ni), the

physically relevant range of each parameter ωi. If we label Ωk1...km the cell corresponding

to subdivisions ∆k1
1 . . .∆km

m (m = 10 or 11 for the analysis with or without the luminosity

constraint), we compute the value of the posterior p.d.f. as

p(~ω ∈ Ωk1...km|D,P) =
1

Vk1...km

Mk1...km

Ntot

(B2)

where Mk1...km is the number of points in the chain with parameter values within the cell

Ωk1...km and Vk1...km = `k11 × · · · × `km
m is the volume of the cell. In order for the procedure to

rend a smooth p.d.f. a sufficiently large Ntot is needed.

The marginalized one-dimensional p.d.f.’s for the parameter ωi is reconstructed as

p(ωi ∈ ∆ki
i |D,P)1-dim =

1

`ki
i

nj∑
kj 6=i=1

Mk1...ki...km

Ntot

. (B3)

Similarly the marginalized two-dimensional p.d.f.’s for the parameter ωi ωj is

p(ωi ∈ ∆ki
i , ωj ∈ ∆

kj

j |D,P)2-dim =
1

`ki
i `

kj

j

nl∑
kl 6=i,j=1

Mk1...ki...kj ...km

Ntot

. (B4)

From these, we obtain the two-dimensional credibility regions with a given CL as the region

with smallest area and with CL integral posterior probability. In practice they are obtained

as the regions surrounded by a two-dimensional isoprobability contour which contains the

2 We start with a flat kernel and after the chain has a certain size, we use a kernel in terms of the covariance
matrix V computed with the the points in the chain. If U is the matrix diagonalizing V and di are the
eigenvalues, ~ω′ = ~ω+U ~̃ω with ω̃i generated according to a distribution |ω̃i|/di× exp(−ω̃i/di). The kernel
is adapted, i.e., the covariance matrix is recalculated, every several steps.
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point of highest posterior probability and within which the integral posterior probability is

CL.
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