20 research outputs found

    Staging Parkinson’s disease according to the MNCD classification correlates with caregiver burden

    Get PDF
    Malaltia de Parkinson; Cuidador; SĂ­mptomes no motorsParkinson's disease; Caregiver; Non-motor symptomsEnfermedad de Parkinson; Cuidador; SĂ­ntomas no motoresBackground and objective: Recently, we demonstrated that staging Parkinson's disease (PD) with a novel simple classification called MNCD, based on four axes (motor, non-motor, cognition, and dependency) and five stages, correlated with disease severity and patients’ quality of life. Here, we analyzed the correlation of MNCD staging with PD caregiver's status. Patients and methods: Data from the baseline visit of PD patients and their principal caregiver recruited from 35 centers in Spain from the COPPADIS cohort from January 2016 to November 2017 were used to apply the MNCD total score (from 0 to 12) and MNCD stages (from 1 to 5) in this cross-sectional analysis. Caregivers completed the Zarit Caregiver Burden Inventory (ZCBI), Caregiver Strain Index (CSI), Beck Depression Inventory-II (BDI-II), PQ-10, and EUROHIS-QOL 8-item index (EUROHIS-QOL8). Results: Two hundred and twenty-four PD patients (63 ± 9.6 years old; 61.2% males) and their caregivers (58.5 ± 12.1 years old; 67.9% females) were included. The frequency of MNCD stages was 1, 7.6%; 2, 58.9%; 3, 31.3%; and 4–5, 2.2%. A more advanced MNCD stage was associated with a higher score on the ZCBI (p < .0001) and CSI (p < .0001), and a lower score on the PQ-10 (p = .001), but no significant differences were observed in the BDI-II (p = .310) and EUROHIS-QOL8 (p = .133). Moderate correlations were observed between the MNCD total score and the ZCBI (r = .496; p < .0001), CSI (r = .433; p < .0001), and BDI-II (r = .306; p < .0001) in caregivers.Conclusion: Staging PD according to the MNCD classification is correlated with caregivers’ strain and burden.FundaciĂłn Española de Ayuda a la InvestigaciĂłn en Enfermedades Neurodegenerativas y/o de Origen GenĂ©tico; Alpha Bioresearch; Spanish Ministry of Economy and Competitiveness, Grant/Award Number: PI16/0157

    Clinical and structural brain correlates of hypomimia in early-stage Parkinson's disease

    Get PDF
    Altres ajuts: acord transformatiu CRUE-CSICBackground and purpose: Reduced facial expression of emotions is a very frequent symptom of Parkinson's disease (PD) and has been considered part of the motor features of the disease. However, the neural correlates of hypomimia and the relationship between hypomimia and other non-motor symptoms of PD are poorly understood. Methods: The clinical and structural brain correlates of hypomimia were studied. For this purpose, cross-sectional data from the COPPADIS study database were used. Age, disease duration, levodopa equivalent daily dose, Unified Parkinson's Disease Rating Scale part III (UPDRS-III), severity of apathy and depression and global cognitive status were collected. At the imaging level, analyses based on gray matter volume and cortical thickness were used. Results: After controlling for multiple confounding variables such as age or disease duration, the severity of hypomimia was shown to be indissociable from the UPDRS-III speech and bradykinesia items and was significantly related to the severity of apathy (ÎČ = 0.595; p < 0.0001). At the level of neural correlates, hypomimia was related to motor regions brodmann area 8 (BA 8) and to multiple fronto-temporo-parietal regions involved in the decoding, recognition and production of facial expression of emotions. Conclusion: Reduced facial expressivity in PD is related to the severity of symptoms of apathy and is mediated by the dysfunction of brain systems involved in motor control and in the recognition, integration and expression of emotions. Therefore, hypomimia in PD may be conceptualized not exclusively as a motor symptom but as a consequence of a multidimensional deficit leading to a symptom where motor and non-motor aspects converge

    Regulatory sites for splicing in human basal ganglia are enriched for disease-relevant information

    Get PDF
    Genome-wide association studies have generated an increasing number of common genetic variants associated with neurological and psychiatric disease risk. An improved understanding of the genetic control of gene expression in human brain is vital considering this is the likely modus operandum for many causal variants. However, human brain sampling complexities limit the explanatory power of brain-related expression quantitative trait loci (eQTL) and allele-specific expression (ASE) signals. We address this, using paired genomic and transcriptomic data from putamen and substantia nigra from 117 human brains, interrogating regulation at different RNA processing stages and uncovering novel transcripts. We identify disease-relevant regulatory loci, find that splicing eQTLs are enriched for regulatory information of neuron-specific genes, that ASEs provide cell-specific regulatory information with evidence for cellular specificity, and that incomplete annotation of the brain transcriptome limits interpretation of risk loci for neuropsychiatric disease. This resource of regulatory data is accessible through our web server, http://braineacv2.inf.um.es/

    Identification of novel risk loci, causal insights, and heritable risk for Parkinson's disease: a meta-analysis of genome-wide association studies

    Get PDF
    Background Genome-wide association studies (GWAS) in Parkinson's disease have increased the scope of biological knowledge about the disease over the past decade. We aimed to use the largest aggregate of GWAS data to identify novel risk loci and gain further insight into the causes of Parkinson's disease. Methods We did a meta-analysis of 17 datasets from Parkinson's disease GWAS available from European ancestry samples to nominate novel loci for disease risk. These datasets incorporated all available data. We then used these data to estimate heritable risk and develop predictive models of this heritability. We also used large gene expression and methylation resources to examine possible functional consequences as well as tissue, cell type, and biological pathway enrichments for the identified risk factors. Additionally, we examined shared genetic risk between Parkinson's disease and other phenotypes of interest via genetic correlations followed by Mendelian randomisation. Findings Between Oct 1, 2017, and Aug 9, 2018, we analysed 7·8 million single nucleotide polymorphisms in 37 688 cases, 18 618 UK Biobank proxy-cases (ie, individuals who do not have Parkinson's disease but have a first degree relative that does), and 1·4 million controls. We identified 90 independent genome-wide significant risk signals across 78 genomic regions, including 38 novel independent risk signals in 37 loci. These 90 variants explained 16–36% of the heritable risk of Parkinson's disease depending on prevalence. Integrating methylation and expression data within a Mendelian randomisation framework identified putatively associated genes at 70 risk signals underlying GWAS loci for follow-up functional studies. Tissue-specific expression enrichment analyses suggested Parkinson's disease loci were heavily brain-enriched, with specific neuronal cell types being implicated from single cell data. We found significant genetic correlations with brain volumes (false discovery rate-adjusted p=0·0035 for intracranial volume, p=0·024 for putamen volume), smoking status (p=0·024), and educational attainment (p=0·038). Mendelian randomisation between cognitive performance and Parkinson's disease risk showed a robust association (p=8·00 × 10−7). Interpretation These data provide the most comprehensive survey of genetic risk within Parkinson's disease to date, to the best of our knowledge, by revealing many additional Parkinson's disease risk loci, providing a biological context for these risk factors, and showing that a considerable genetic component of this disease remains unidentified. These associations derived from European ancestry datasets will need to be followed-up with more diverse data. Funding The National Institute on Aging at the National Institutes of Health (USA), The Michael J Fox Foundation, and The Parkinson's Foundation (see appendix for full list of funding sources)

    Genome-wide structural variant analysis identifies risk loci for non-Alzheimer’s dementias

    Get PDF
    We characterized the role of structural variants, a largely unexplored type of genetic variation, in two non-Alzheimer’s dementias, namely Lewy body dementia (LBD) and frontotemporal dementia (FTD)/amyotrophic lateral sclerosis (ALS). To do this, we applied an advanced structural variant calling pipeline (GATK-SV) to short-read whole-genome sequence data from 5,213 European-ancestry cases and 4,132 controls. We discovered, replicated, and validated a deletion in TPCN1 as a novel risk locus for LBD and detected the known structural variants at the C9orf72 and MAPT loci as associated with FTD/ALS. We also identified rare pathogenic structural variants in both LBD and FTD/ALS. Finally, we assembled a catalog of structural variants that can be mined for new insights into the pathogenesis of these understudied forms of dementia

    Predictors of global non-motor symptoms burden progression in parkinson's disease. Results from the coppadis cohort at 2-year follow-up

    Get PDF
    Altres ajuts: FundaciĂłn Española de Ayuda a la InvestigaciĂłn en Parkinson y otras Enfermedades Neuro-degenerativas (Curemos el Parkinson, www.curemoselparkinson.org).Background and Objective: Non-motor symptoms (NMS) progress in different ways between Parkinson's disease (PD) patients. The aim of the present study was to (1) analyze the change in global NMS burden in a PD cohort after a 2-year follow-up, (2) to compare the changes with a control group, and (3) to identify predictors of global NMS burden progression in the PD group. Material and Methods: PD patients and controls, recruited from 35 centers of Spain from the COPPADIS cohort from January 2016 to November 2017, were followed-up with after 2 years. The Non-Motor Symptoms Scale (NMSS) was administered at baseline (V0) and at 24 months ± 1 month (V2). Linear regression models were used for determining predictive factors of global NMS burden progression (NMSS total score change from V0 to V2 as dependent variable). Results: After the 2-year follow-up, the mean NMS burden (NMSS total score) significantly increased in PD patients by 18.8% (from 45.08 ± 37.62 to 53.55 ± 42.28; p < 0.0001; N = 501; 60.2% males, mean age 62.59 ± 8.91) compared to no change observed in controls (from 14.74 ± 18.72 to 14.65 ± 21.82; p = 0.428; N = 122; 49.5% males, mean age 60.99 ± 8.32) (p < 0.0001). NMSS total score at baseline (ÎČ = −0.52), change from V0 to V2 in PDSS (Parkinson's Disease Sleep Scale) (ÎČ = −0.34), and change from V0 to V2 in NPI (Neuropsychiatric Inventory) (ÎČ = 0.25) provided the highest contributions to the model (adjusted R-squared 0.41; Durbin-Watson test = 1.865). Conclusions: Global NMS burden demonstrates short-term progression in PD patients but not in controls and identifies worsening sleep problems and neuropsychiatric symptoms as significant independent predictors of this NMS progression
    corecore