1,024 research outputs found
Effect of ambient temperature variations on an indigenous microalgae-nitrifying bacteria culture dominated by Chlorella
[EN] Two outdoor photobioreactors were operated to evaluate the effect of variable ambient temperature on an indigenous microalgae-nitrifying bacteria culture dominated by Chlorella. Four experiments were carried out in different seasons, maintaining the temperature-controlled PBR at around 25¿°C (by either heating or cooling), while the temperature in the non-temperature-controlled PBR was allowed to vary with the ambient conditions. Temperatures in the range of 15¿30¿°C had no significant effect on the microalgae cultivation performance. However, when the temperature rose to 30¿35¿°C microalgae viability was significantly reduced. Sudden temperature rises triggered AOB growth in the indigenous microalgae culture, which worsened microalgae performance, especially when AOB activity made the system ammonium-limited. Microalgae activity could be recovered after a short temperature peak over 30¿°C once the temperature dropped, but stopped when the temperature was maintained around 28¿30¿°C for several days.This research work was supported by the Spanish Ministry of
Economy and Competitiveness (MINECO, Projects CTM2014-54980-C2-1-R and CTM2014-54980-C2-2-R) jointly with the European Regional Development Fund (ERDF), both of which are gratefully acknowledged. It also received support from the Spanish Ministry of Education, Culture and Sport via a pre-doctoral FPU fellowship to authors J. González-Camejo (FPU14/05082) and S. Aparicio (FPU/15/02595).Gonzalez-Camejo, J.; Aparicio Antón, SE.; Ruano, M.; Borrás, L.; Barat, R.; Ferrer, J. (2019). Effect of ambient temperature variations on an indigenous microalgae-nitrifying bacteria culture dominated by Chlorella. Bioresource Technology. 290:1-10. https://doi.org/10.1016/j.biortech.2019.121788S11029
A frequentist analysis of solar neutrino data
We calculate with Monte Carlo the goodness of fit and the confidence level of
the standard allowed regions for the neutrino oscillation parameters obtained
from the fit of solar neutrino data. We show that the values of the goodness of
fit and of the confidence level of the allowed regions are significantly
smaller than the standard ones. Using Neyman's method, we also calculate exact
allowed regions with correct frequentist coverage. We show that the standard
allowed region around the global minimum of the least-squares function is a
reasonable approximation of the exact one, whereas the size of the other
regions is dramatically underestimated in the standard method.Comment: 19 page
Strong 3D correlations in vortex system of Bi2212:Pb
The experimental study of magnetic flux penetration under crossed magnetic
fields in Bi2212:Pb single crystal performed by magnetooptic technique (MO)
reveals remarkable field penetration pattern alteration (flux configuration
change) and superconducting current anisotropy enhancement by the in-plane
field. The anisotropy increases with the temperature rise up to . At an abrupt change in the flux behavior is found; the
correlation between the in-plane magnetic field and the out-of-plane magnetic
flux penetration disappears. No correlation is observed for . The
transition temperature does not depend on the magnetic field strength.
The observed flux penetration anisotropy is considered as an evidence of a
strong 3D - correlation between pancake vortices in different CuO planes at . This enables understanding of a remarkable pinning observed in
Bi2212:Pb at low temperatures.Comment: 8 pages, 9 figure
Mammal and tree diversity accumulate different types of soil organic matter in the northern Amazon
Diversity of plants and animals influence soil carbon through their contributions
to soil organic matter (SOM). However, we do not know whether mammal and
tree communities affect SOM composition in the same manner. This question is
relevant because not all forms of carbon are equally resistant to mineralization
by microbes and thus, relevant to carbon storage. We analyzed the elemental
and molecular composition of 401 soil samples, with relation to the species richness
of 83 mammal and tree communities at a landscape scale across 4.8 million
hectares in the northern Amazon. We found opposite effects of mammal and
tree richness over SOM composition. Mammal diversity is related to SOM rich
in nitrogen, sulfur and iron whereas tree diversity is related to SOM rich in
aliphatic and carbonyl compounds. These results help us to better understand
the role of biodiversity in the carbon cycle and its implications for climate change
mitigation.Xunta de Galicia | ED481D 2019/024Xunta de Galicia | ED431C2021/32European Commission | Ref. H2020, n. 947921National Science Foundation (NSF) | BE/CNH 05 0809
Three-Neutrino Mixing after the First Results from K2K and KamLAND
We analyze the impact of the data on long baseline \nu_\mu disappearance from
the K2K experiment and reactor \bar\nu_e disappearance from the KamLAND
experiment on the determination of the leptonic three-generation mixing
parameters. Performing an up-to-date global analysis of solar, atmospheric,
reactor and long baseline neutrino data in the context of three-neutrino
oscillations, we determine the presently allowed ranges of masses and mixing
and we consistently derive the allowed magnitude of the elements of the
leptonic mixing matrix. We also quantify the maximum allowed contribution of
\Delta m^2_{21} oscillations to CP-odd and CP-even observables at future long
baseline experiments.Comment: Some typos correcte
Robust signatures of solar neutrino oscillation solutions
With the goal of identifying signatures that select specific neutrino
oscillation parameters, we test the robustness of global oscillation solutions
that fit all the available solar and reactor experimental data. We use three
global analysis strategies previously applied by different authors and also
determine the sensitivity of the oscillation solutions to the critical nuclear
fusion cross section, S_{17}(0), for the production of 8B. The favored
solutions are LMA, LOW, and VAC in order of g.o.f. The neutral current to
charged current ratio for SNO is predicted to be 3.5 +- 0.6 (1 sigma), which is
separated from the no-oscillation value of 1.0 by much more than the expected
experimental error. The predicted range of the day-night difference in charged
current rates is (8.2 +- 5.2)% and is strongly correlated with the day-night
effect for neutrino-electron scattering. A measurement by SNO of either a NC to
CC ratio > 3.3 or a day-night difference > 10%, would favor a small region of
the currently allowed LMA neutrino parameter space. The global oscillation
solutions predict a 7Be neutrino-electron scattering rate in BOREXINO and
KamLAND in the range 0.66 +- 0.04 of the BP00 standard solar model rate, a
prediction which can be used to test both the solar model and the neutrino
oscillation theory. Only the LOW solution predicts a large day-night effect(<
42%) in BOREXINO and KamLAND. For the KamLAND reactor experiment, the LMA
solution predicts 0.44 of the standard model rate; we evaluate 1 sigma and 3
sigma uncertainties and the first and second moments of the energy spectrum.Comment: Included predictions for KamLAND reactor experiment and updated to
include 1496 days of Super-Kamiokande observation
Transport Properties through Double Barrier Structure in Graphene
The mode-dependent transmission of relativistic ballistic massless Dirac
fermion through a graphene based double barrier structure is being investigated
for various barrier parameters. We compare our results with already published
work and point out the relevance of these findings to a systematic study of the
transport properties in double barrier structures. An interesting situation
arises when we set the potential in the leads to zero, then our 2D problem
reduces effectively to a 1D massive Dirac equation with an effective mass
proportional to the quantized wave number along the transverse direction.
Furthermore we have shown that the minimal conductivity and maximal Fano factor
remain insensitive to the ratio between the two potentials V_2/V_1=\alpha.Comment: 18 pages, 12 figures, clarifications and reference added, misprints
corrected. Version to appear in JLT
Model Independent Information On Solar Neutrino Oscillations
We present the results of a Bayesian analysis of solar neutrino data in terms
of nu_e->nu_{mu,tau} oscillations, independent from the Standard Solar Model
predictions for the solar neutrino fluxes. We show that such a model
independent analysis allows to constraint the values of the neutrino mixing
parameters in limited regions around the usual SMA, LMA, LOW and VO regions.
Furthermore, there is a strong indication in favor of large neutrino mixing and
large values of Delta m^2 (LMA region). We calculate also the allowed ranges of
the neutrino fluxes and we show that they are in good agreement with the
Standard Solar Model prediction. In particular, the ratio of the 8B flux with
its Standard Solar Model prediction is constrained in the interval [0.45,1.42]
with 99.73% probability. Finally, we show that the hypothesis of no neutrino
oscillations is strongly disfavored in a model independent way with respect to
the hypothesis of neutrino oscillations.Comment: 40 pages, 20 figures. Added references and improved figure
Status of four-neutrino mass schemes: a global and unified approach to current neutrino oscillation data
We present a unified global analysis of neutrino oscillation data within the
framework of the four-neutrino mass schemes (3+1) and (2+2). We include all
data from solar and atmospheric neutrino experiments, as well as information
from short-baseline experiments including LSND. If we combine only solar and
atmospheric neutrino data, (3+1) schemes are clearly preferred, whereas
short-baseline data in combination with atmospheric data prefers (2+2) models.
When combining all data in a global analysis the (3+1) mass scheme gives a
slightly better fit than the (2+2) case, though all four-neutrino schemes are
presently acceptable. The LSND result disfavors the three-active neutrino
scenario with only and at 99.9% CL with
respect to the four-neutrino best fit model. We perform a detailed analysis of
the goodness of fit to identify which sub-set of the data is in disagreement
with the best fit solution in a given mass scheme.Comment: 32 pages, 8 Figures included, REVTeX4.Improved discussion in sec. XI,
references added, version accepted by Phys. Rev.
Three Generation Neutrino Oscillation Parameters after SNO
We examine the solar neutrino problem in the context of the realistic three
neutrino mixing scenario including the SNO charged current (CC) rate. The two
independent mass squared differences and are taken to be in the solar and atmospheric ranges
respectively. We incorporate the constraints on m as obtained
by the SuperKamiokande atmospheric neutrino data and determine the allowed
values of , and from a combined
analysis of solar and CHOOZ data. Our aim is to probe the changes in the values
of the mass and mixing parameters with the inclusion of the SNO data as well as
the changes in the two-generation parameter region obtained from the solar
neutrino analysis with the inclusion of the third generation. We find that the
inclusion of the SNO CC rate in the combined solar + CHOOZ analysis puts a more
restrictive bound on . Since the allowed values of
are constrained to very small values by the CHOOZ experiment there is no
qualitative change over the two generation allowed regions in the plane. The best-fit comes in the LMA region and
no allowed area is obtained in the SMA region at 3 level from combined
solar and CHOOZ analysis.Comment: One reference added. Version to apprear in PR
- …