135 research outputs found
Maximum-likelihood models for mapping genetic markers showing segregation distortion : 1. Backcross populations
Une approche du maximum de vraisemblance est utilisĂ©e pour estimer les frĂ©quences de recombinaison entre des marqueurs prĂ©sentant des distorsions de sĂ©grĂ©gation dans des populations backcross. L'hypothĂšse faite ici est que les distorsions sont induites par des diffĂ©rences de viabilitĂ© entre gamĂštes ou zygotes dues Ă la prĂ©sence d'un ou plusieurs allĂšles contre-sĂ©lectionnĂ©s. Nous montrons que l'estimateur de Bailey (1949) reste convergent donc efficace sous des conditions plus gĂ©nĂ©rales que celles dĂ©finies par son auteur. Cet estimateur devrait donc ĂȘtre utilisĂ© Ă la place de l'estimateur classique du maximum de vraisemblance. La question de la dĂ©tection d'une liaison peut ĂȘtre affectĂ©e par les distorsions de sĂ©grĂ©gation. (RĂ©sumĂ© d'auteur
TESS-Keck Survey. V. Twin Sub-Neptunes Transiting The Nearby G Star HD 63935
We present the discovery of two nearly identically sized sub-Neptune transiting planets orbiting HD 63935, a bright (V = 8.6 mag), Sun-like (Teff = 5560 K) star at 49 pc. TESS identified the first planet, HD 63935 b (TOI-509.01), in Sectors 7 and 34. We identified the second signal (HD 63935 c) in Keck High Resolution Echelle Spectrometer and Lick Automated Planet Finder radial velocity data as part of our follow-up campaign. It was subsequently confirmed with TESS photometry in Sector 34 as TOI-509.02. Our analysis of the photometric and radial velocity data yielded a robust detection of both planets with periods of 9.0600 ± 0.007 and 21.40 ± 0.0019 days, radii of 2.99 ± 0.14 and 2.90 ± 0.13 Râ, and masses of 10.8 ± 1.8 and 11.1 ± 2.4 Mâ. We calculated densities for planets b and c consistent with a few percent of the planet mass in hydrogen/helium envelopes. We also describe our survey\u27s efforts to choose the best targets for James Webb Space Telescope atmospheric follow-up. These efforts suggest that HD 63935 b has the most clearly visible atmosphere of its class. It is the best target for transmission spectroscopy (ranked by the transmission spectroscopy metric, a proxy for atmospheric observability) in the so far uncharacterized parameter space comprising sub-Neptune-sized (2.6 Râ \u3c Rp \u3c 4 Râ), moderately irradiated (100 Fâ \u3c Fp \u3c 1000 Fâ) planets around G stars. Planet c is also a viable target for transmission spectroscopy, and given the indistinguishable masses and radii of the two planets, the system serves as a natural laboratory for examining the processes that shape the evolution of sub-Neptune planets
Near-Resonance In A System Of Sub-Neptunes From TESS
We report the Transiting Exoplanet Survey Satellite detection of a multi-planet system orbiting the V = 10.9 K0 dwarf TOI-125. We find evidence for up to five planets, with varying confidence. Three transit signals with high signal-to-noise ratio correspond to sub-Neptune-sized planets (2.76, 2.79, and 2.94 Râ), and we statistically validate the planetary nature of the two inner planets (Pb = 4.65 days, Pc = 9.15 days). With only two transits observed, we report the outer object (P.03 = 19.98 days) as a planet candidate with high signal-to-noise ratio. We also detect a candidate transiting super-Earth (1.4 Râ) with an orbital period of only 12.7 hr and a candidate Neptune-sized planet (4.2 Râ) with a period of 13.28 days, both at low signal-to-noise ratio. This system is amenable to mass determination via radial velocities and transit-timing variations, and provides an opportunity to study planets of similar size while controlling for age and environment. The ratio of orbital periods between TOI-125 b and c (Pc/Pb = 1.97) is slightly lower than an exact 2:1 commensurability and is atypical of multiple planet systems from Kepler, which show a preference for period ratios just wide of first-order period ratios. A dynamical analysis refines the allowed parameter space through stability arguments and suggests that despite the nearly commensurate periods, the system is unlikely to be in resonance
Two Bright M Dwarfs Hosting Ultra-Short-Period Super-Earths With Earth-Like Compositions
We present observations of two bright M dwarfs (TOI-1634 and TOI-1685: J = 9.5â9.6) hosting ultra-short-period (USP) planets identified by the TESS mission. The two stars are similar in temperature, mass, and radius (Teff â 3500 K, Mâ â 0.45â0.46 Mâ, and Râ â 0.45â0.46 Râ), and the planets are both super-Earth size (1.25 Râ \u3c Rp \u3c 2.0 Râ). For both systems, light curves from ground-based photometry exhibit planetary transits, whose depths are consistent with those from the TESS photometry. We also refine the transit ephemerides based on the ground-based photometry, finding the orbital periods of P = 0.9893436 ± 0.0000020 days and P = 0.6691416 ± 0.0000019 days for TOI-1634b and TOI-1685b, respectively. Through intensive radial velocity (RV) observations using the InfraRed Doppler (IRD) instrument on the Subaru 8.2 m telescope, we confirm the planetary nature of the TOIs and measure their masses: 10.14 ± 0.95 Mâ and 3.43 ± 0.93 Mâ for TOI-1634b and TOI-1685b, respectively, when the observed RVs are fitted with a single-planet circular-orbit model. Combining those with the planet radii of Rp = 1.749 ± 0.079 Râ (TOI-1634b) and 1.459 ± 0.065 Râ (TOI-1685b), we find that both USP planets have mean densities consistent with an Earth-like internal composition, which is typical for small USP planets. TOI-1634b is currently the most massive USP planet in this category, and it resides near the radius valley, which makes it a benchmark planet in the context of discussing the size limit of rocky planet cores as well as testing the formation scenarios for USP planets. Excess scatter in the RV residuals for TOI-1685 suggests the presence of a possible secondary planet or unknown activity/instrumental noise in the RV data, but further observations are required to check those possibilities
Gap junctions in olfactory neurons modulate olfactory sensitivity
<p>Abstract</p> <p>Background</p> <p>One of the fundamental questions in olfaction is whether olfactory receptor neurons (ORNs) behave as independent entities within the olfactory epithelium. On the basis that mature ORNs express multiple connexins, I postulated that gap junctional communication modulates olfactory responses in the periphery and that disruption of gap junctions in ORNs reduces olfactory sensitivity. The data collected from characterizing connexin 43 (Cx43) dominant negative transgenic mice OlfDNCX, and from calcium imaging of wild type mice (WT) support my hypothesis.</p> <p>Results</p> <p>I generated OlfDNCX mice that express a dominant negative Cx43 protein, Cx43/ÎČ-gal, in mature ORNs to inactivate gap junctions and hemichannels composed of Cx43 or other structurally related connexins. Characterization of OlfDNCX revealed that Cx43/ÎČ-gal was exclusively expressed in areas where mature ORNs resided. Real time quantitative PCR indicated that cellular machineries of OlfDNCX were normal in comparison to WT. Electroolfactogram recordings showed decreased olfactory responses to octaldehyde, heptaldehyde and acetyl acetate in OlfDNCX compared to WT. Octaldehyde-elicited glomerular activity in the olfactory bulb, measured according to odor-elicited <it>c-fos </it>mRNA upregulation in juxtaglomerular cells, was confined to smaller areas of the glomerular layer in OlfDNCX compared to WT. In WT mice, octaldehyde sensitive neurons exhibited reduced response magnitudes after application of gap junction uncoupling reagents and the effects were specific to subsets of neurons.</p> <p>Conclusions</p> <p>My study has demonstrated that altered assembly of Cx43 or structurally related connexins in ORNs modulates olfactory responses and changes olfactory activation maps in the olfactory bulb. Furthermore, pharmacologically uncoupling of gap junctions reduces olfactory activity in subsets of ORNs. These data suggest that gap junctional communication or hemichannel activity plays a critical role in maintaining olfactory sensitivity and odor perception.</p
Global Perspectives on Task Shifting and Task Sharing in Neurosurgery.
BACKGROUND: Neurosurgical task shifting and task sharing (TS/S), delegating clinical care to non-neurosurgeons, is ongoing in many hospital systems in which neurosurgeons are scarce. Although TS/S can increase access to treatment, it remains highly controversial. This survey investigated perceptions of neurosurgical TS/S to elucidate whether it is a permissible temporary solution to the global workforce deficit. METHODS: The survey was distributed to a convenience sample of individuals providing neurosurgical care. A digital survey link was distributed through electronic mailing lists of continental neurosurgical societies and various collectives, conference announcements, and social media platforms (July 2018-January 2019). Data were analyzed by descriptive statistics and univariate regression of Likert Scale scores. RESULTS: Survey respondents represented 105 of 194 World Health Organization member countries (54.1%; 391 respondents, 162 from high-income countries and 229 from low- and middle-income countries [LMICs]). The most agreed on statement was that task sharing is preferred to task shifting. There was broad consensus that both task shifting and task sharing should require competency-based evaluation, standardized training endorsed by governing organizations, and maintenance of certification. When perspectives were stratified by income class, LMICs were significantly more likely to agree that task shifting is professionally disruptive to traditional training, task sharing should be a priority where human resources are scarce, and to call for additional TS/S regulation, such as certification and formal consultation with a neurosurgeon (in person or electronic/telemedicine). CONCLUSIONS: Both LMIC and high-income countries agreed that task sharing should be prioritized over task shifting and that additional recommendations and regulations could enhance care. These data invite future discussions on policy and training programs
The dynamic geophysical environment of (101955) Bennu based on OSIRIS-REx measurements
The top-shaped morphology characteristic of asteroid (101955) Bennu, often found among fast-spinning asteroids and binary asteroid primaries, may have contributed substantially to binary asteroid formation. Yet a detailed geophysical analysis of this morphology for a fast-spinning asteroid has not been possible prior to the Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) mission. Combining the measured Bennu mass and shape obtained during the Preliminary Survey phase of the OSIRIS-REx mission, we find a notable transition in Bennuâs surface slopes within its rotational Roche lobe, defined as the region where material is energetically trapped to the surface. As the intersection of the rotational Roche lobe with Bennuâs surface has been most recently migrating towards its equator (given Bennuâs increasing spin rate), we infer that Bennuâs surface slopes have been changing across its surface within the last million years. We also find evidence for substantial density heterogeneity within this body, suggesting that its interior is a mixture of voids and boulders. The presence of such heterogeneity and Bennuâs top shape are consistent with spin-induced failure at some point in its past, although the manner of its failure cannot yet be determined. Future measurements by the OSIRIS-REx spacecraft will provide insight into and may resolve questions regarding the formation and evolution of Bennuâs top-shape morphology and its link to the formation of binary asteroids
Evidence for widespread hydrated minerals on asteroid (101955) Bennu
Early spectral data from the Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) mission reveal evidence for abundant hydrated minerals on the surface of near-Earth asteroid (101955) Bennu in the form of a near-infrared absorption near 2.7â”m and thermal infrared spectral features that are most similar to those of aqueously altered CM-type carbonaceous chondrites. We observe these spectral features across the surface of Bennu, and there is no evidence of substantial rotational variability at the spatial scales of tens to hundreds of metres observed to date. In the visible and near-infrared (0.4 to 2.4â”m) Bennuâs spectrum appears featureless and with a blue (negative) slope, confirming previous ground-based observations. Bennu may represent a class of objects that could have brought volatiles and organic chemistry to Earth
- âŠ