127 research outputs found

    Analysis of sexual behaviour in male rabbits across successive tests leading to sexual exhaustion

    Full text link
    [EN] Various parameters of sexual behaviour were studied in ten male rabbits daily tested with sexually receptive females (ovariectomized, given estradiol benzoate s.c. 5 µg/day). The aim of this study was to analyse rabbit sexual behaviour during successive tests leading to sexual exhaustion. We allowed copulation ad libitum and determined if sexual satiety was reached within a day and sexual exhaustion across several days. The pair was allowed to copulate freely until the male failed to show sexual interest in that female for 30 minutes. The female was then removed and replaced by another; this procedure was repeated using as many does as needed, until the male showed no interest in any female for 2 hours. Scent-marking (chinning) was also recorded, before and after the copulation test. This whole procedure was repeated daily until the male showed no sexual behaviour at all on a given day. Within a test, copulation ad libitum led to a gradual increase in the time interval between successive mounts and ejaculations, regardless of the day of testing. Such increments predicted that the buck was reaching sexual satiety. The "miss" rate (i.e., the proportion of mounts that did not culminate in ejaculation) significantly increased from a median of 25 on the first day to 55 on the last day of testing. The mean time to reach copulatory inactivity decreased from 4 hrs on the first day to 1 hr on the last day. The total number of ejaculations within a test decreased from an average of 22 to 6 (first vs last day, respectively) and the number of chin marks was reduced by 69% compared with pre-mating values, regardless of the day of testing. All bucks eventually stopped copulating after a variable number of days (range=2-15 days). We concluded that, following copulation ad libitum with several females, male rabbits reach sexual satiety (i.e., they are unable to continue copulating on the same day) and, after several days, they also attain sexual exhaustion, a state in which copulation is totally arrested for at least 24 hours. Some behavioural parameters can be used as reliable predictors that a buck is approaching sexual satiety and sexual exhaustion.Jimenez, P.; Serrano-Meneses, M.; Cuamatzi, E.; González-Mariscal, G.; González-Maris (2012). Analysis of sexual behaviour in male rabbits across successive tests leading to sexual exhaustion. World Rabbit Science. 20(1):13-23. doi:10.4995/wrs.2012.1034SWORD132320

    Maternal behaviour and welfare of the domestic and wild rabbit doe and its litter

    Get PDF
    El conejo europeo (Oryctolagus cuniculus), además de tener importancia faunística en el Mediterráneo occidental, es una especie ganadera relevante que es la base de un subsector pecuario industrializado orientado a la producción de carne en varios países, sobre todo europeos, mientras que en algunos pa- íses en vías de desarrollo se explota bajo sistemas alternativos orientados a la integración de renta y a la seguridad alimentaria. A la orientación cárnica se suman otras aptitudes productivas heterogéneas que configuran una gran diversidad de sistemas de producción cunícola. Este trabajo revisa el comportamiento materno de la coneja y de su camada, incluyendo su regulación endocrina, tanto en el animal silvestre como en la producción cunícola comercial y alternativa, y se relaciona con los factores de manejo, con la productividad en granja y con el bienestar de la especie. Se analizan también las implicaciones que las normativas sobre bienestar animal comportan respecto al alojamiento, manejo y satisfacción de las necesidades etológicas de las conejas reproductoras y de los gazapos durante la cría, caracterizadas, fundamentalmente, porque en algunos países tienden a proporcionar más espacio y enriquecimiento ambiental en las jaulas.The European rabbit (Oryctolagus cuniculus), in addition to its faunal interest in the western Mediterranean, is a relevant species which in several European countries is the basis of a meat-oriented, industrial livestock subsector, while in many developing countries rabbits are raised under alternative systems aimed at income integration and food security. In addition to meat production, other productive orientations exist that generate a variety of rabbit production systems. This paper reviews the ethology of maternal behaviour of the breeding doe and her litter, including its endocrine regulation, both in wild animal and in industrial and alternative farming systems, and its relation to management factors, productivity and performance as well as the welfare of the species. It also discusses the implications of the regulations concerning animal welfare on housing, management and satisfaction of behavioural needs of breeding does and their litters, which in some countries tend to provide more space and environmental enrichment in cage

    Levels of testosterone, progesterone and oestradiol in pregnant-lactating does in relation to aggression during group housing

    Get PDF
    [EN] The neuroendocrine regulation of rabbit maternal behaviour has been explored in detail. However, little is yet known about the hormonal regulation of aggression in concurrently pregnant-lactating does, a reproductive condition that prevails during group housing of rabbits on farms. Therefore, in this study we determined the relation between a) the levels of progesterone, testosterone, and oestradiol during lactation; b) the anogenital distance at artificial insemination; and c) the timing of grouping with the intensity of agonistic behaviour, published previously. We performed four consecutive trials, where three groups of eight does each were artificially inseminated on day 10 postpartum (pp) and grouped on either day 12, 18 or 22 pp. Using Dipetalogaster maxima, a reduviid blood-sucking bug, we collected blood samples during the pregnant-lactating phase (days 13, 15, 17, 19, 21, 23 pp) on one or two randomly chosen does per treatment group. Testosterone levels varied little across the pregnant-lactating phase, agreeing with results from pregnant-only rabbits, while progesterone levels increased from day 3 (=13 dpp) to day 7 (=17 dpp) and remained unchanged until day 13 (=23 dpp) of pregnancy. All oestradiol concentrations fell below the limit of detection. Overall, all concentrations were slightly lower in comparison to rabbit studies with pregnantonly does. The agonistic behaviour was not related to the respective hormonal concentrations at grouping. In conclusion, the time point of grouping does after artificial insemination (AI) in the semi-group housing system only had a weak influence on aggression and the hormonal profile did not indicate an optimum time for grouping.Federal Food Safety and Veterinary Office (BLV, Project No. 2.18.04)Braconnier, M.; González-Mariscal, G.; Wauters, J.; Gebhardt-Henrich, SG. (2021). Levels of testosterone, progesterone and oestradiol in pregnant-lactating does in relation to aggression during group housing. World Rabbit Science. 29(4):247-261. https://doi.org/10.4995/wrs.2021.14897OJS247261294Aguilar-Roblero R., González-Mariscal G. 2020. Behavioral, neuroendocrine and physiological indicators of the circadian biology of male and female rabbits. Eur. J. Neurosci., 51: 429-453. https://doi.org/10.1111/ejn.14265Albert D.J., Jonik R.H., Walsh M.L. 1990. Hormone-Dependent Aggression in Female Rats: Testosterone Implants Attenuate the Decline in Aggression Following Ovariectomy I. Physiol. Behav., 47, 659-664. https://doi.org/10.1016/0031-9384(90)90074-EAndrist C.A., Bigler L.M., Würbel H., Roth B.A. 2012. Effects of group stability on aggression, stress and injuries in breeding rabbits. Appl. Anim. Behav. Sci., 142: 182-188. https://doi.org/10.1016/j.applanim.2012.10.017Andrist C.A., van den Borne B.H.P., Bigler L.M., Buchwalder T., Roth B.A. 2013. Epidemiologic survey in Swiss group-housed breeding rabbits: Extent of lesions and potential risk factors. Prev. Vet. Med., 108: 218-224. https://doi.org/10.1016/j.prevetmed.2012.07.015Arias-Álvarez M., García-García R.M., Torres-Rovira L., González- Bulnes A., Rebollar P.G., Lorenzo P.L. 2010. Influence of hormonal and nonhormonal estrus synchronization methods on follicular and oocyte quality in primiparous lactating does at early postpartum period. Theriogenology, 73: 26-35. https://doi.org/10.1016/j.theriogenology.2009.07.017Bánszegi O., Altbäcker V., Bilkó Á. 2009. Intrauterine position influences anatomy and behavior in domestic rabbits. Physiol. Behav., 98: 258-262. https://doi.org/10.1016/j.physbeh.2009.05.016Bánszegi O., Szenczi P., Dombay K., Bilkó Á., Altbäcker V. 2012. Anogenital distance as a predictor of attractiveness, litter size and sex ratio of rabbit does. Physiol. Behav., 105: 1226-1230. https://doi.org/10.1016/j.physbeh.2012.01.002Beehner J.C., Phillips-Conroy J.E., Whitten P.L. 2005. Female testosterone, dominance rank, and aggression in an Ethiopian population of hybrid baboons. Am. J. Primatol., 67, 101-119. https://doi.org/10.1002/ajp.20172Bill J., Rauterberg S., Herbrandt S., Ligges U., Kemper N., Fels M., Agonistic behavior and social hierarchy in female domestic rabbits kept in semi-groups. J. Vet. Behav., 38: 21-31. https://doi.org/10.1016/j.jveb.2020.03.004Braconnier M., Gómez Y., Gebhardt-Henrich S.G. 2020. Different regrouping schedules in semi group-housed rabbit does: Effects on agonistic behaviour, stress and lesions. Appl. Anim. Behav. Sci., 228: 105024. https://doi.org/10.1016/j.applanim.2020.105024BTS. 2019. https://www.blw.admin.ch/blw/de/home/instrumente/direktzahlungen/produktionssystembeitraege/tierwohlbeitraege.html.Buijs S., Maertens L., Hermans K., Vangeyte J., André F., Tuyttens M. 2015. Behaviour, wounds, weight loss and adrenal weight of rabbit does as affected by semigroup housing. Appl. Anim. Behav. Sci., 172: 44-51. https://doi.org/10.1016/j.applanim.2015.09.003Buijs S., Vangeyte J., Tuyttens F.A.M. 2016. Effects of communal rearing and group size on breeding rabbits' post-grouping behaviour and its relation to anogenital distance. Appl. Anim. Behav. Sci., 182: 53-60. https://doi.org/10.1016/j.applanim.2016.06.005Carnaby K., Painer J., Söderberg A., Gavier-Widèn D., Göritz F., Dehnhard M., Jewgenow K. 2012. Histological and endocrine characterization of the annual luteal activity in Eurasian Lynx (Lynx lynx). Reproduction, 10.1530 / REP-12-0166 144: 477-483. https://doi.org/10.1530/REP-12-0166Chu L.R., Garner J.P., Mench J.A., 2004. A behavioral comparison of New Zealand White rabbits (Oryctolagus cuniculus) housed individually or in pairs in conventional laboratory cages. Appl. Anim. Behav. Sci., 85: 121-139. https://doi.org/10.1016/j.applanim.2003.09.011Dal Bosco A., Mugnai C., Martino M., Szendrő Z., Mattioli S., Cambiotti V., Cartoni Mancinelli A., Moscati L., Castellini C. 2019. Housing Rabbit Does in a Combi System with Removable Walls: Effect on Behaviour and Reproductive Performance. Animals, 9: 528-528. https://doi.org/10.3390/ani9080528Davis E.S., Marler C.A. 2003. The progesterone challenge: steroid hormone changes following a simulated territorial intrusion in female Peromyscus californicus. Horm. Behav., Special Issue on Aggressive and Violent Behavior, 44: 185-198. https://doi.org/10.1016/S0018-506X(03)00128-4Dehnhard M., Naidenko S., Frank A., Braun B., Göritz F., Jewgenow K. 2008. Non-invasive Monitoring of Hormones: A Tool to Improve Reproduction in Captive Breeding of the Eurasian Lynx. Reprod. Domest. Anim., 43: 74-82. https://doi.org/10.1111/j.1439-0531.2008.01145.xDenenberg V.H., Sawin P.B., Frommer G.P., Ross S. 1958. Genetic, physiological and behavioral background of reproduction in the rabbit: IV. An analysis of maternal behavior at successive parturitions. Behaviour 13: 131-142. https://doi.org/10.1163/156853958X00073Drickamer L.C. 1996. Intra-uterine position and anogenital distance in house mice: consequences under field conditions. Anim. Behav., 51: 925-934. https://doi.org/10.1006/anbe.1996.0096Dušek A., Bartoš L. 2012. Variation in Ano-Genital Distance in Spontaneously Cycling Female Mice. Reprod. Domest. Anim., 47: 984-987. https://doi.org/10.1111/j.1439-0531.2012.02003.xFortun L., Prunier A., Lebas F. 1993. Effects of lactation on fetal survival and development in rabbit does mated shortly after parturition. J. Anim. Sci., 71: 1882-1886. https://doi.org/10.2527/1993.7171882xGobikrushanth M., Bruinjé T.C., Colazo M.G., Butler S.T., Ambrose D.J. 2017. Characterization of anogenital distance and its relationship to fertility in lactating Holstein cows. J. Dairy Sci., 100: 9815-9823. https://doi.org/10.3168/jds.2017-13033González-Mariscal G., Díaz-Sánchez V., Melo A.I., Beyer C., Rosenblatt J.S. 1994. Maternal behavior in New Zealand white rabbits: Quantification of somatic events, motor patterns, and steroid plasma levels. Physiol. Behav., 55: 1081-1089. https://doi.org/10.1016/0031-9384(94)90391-3González-Mariscal G., Jiménez P., Beyer C., Rosenblatt J.S. 2003. Androgens stimulate specific aspects of maternal nestbuilding and reduce food intake in rabbits. Horm. Behav., 43: 312-317. https://doi.org/10.1016/S0018-506X(02)00046-6González-Mariscal G., Gallegos J.A., Sierra-Ramirez A., Flores J.G. 2009. Impact of concurrent pregnancy and lactation on maternal nest- building, estradiol and progesterone concentrations in rabbits. World Rabbit Sci., 17: 145-152. https://doi.org/10.4995/wrs.2009.654González-Mariscal G., Lemus A.C., Vega-González A., Aguilar-Roblero A. 2013a. Litter size determines circadian periodicity of nursing in rabbits. Chronobiol. Int., 30: 711-718. https://doi.org/10.3109/07420528.2013.784769González-Mariscal G., Toribio A., Gallegos-Huicochea J.A., Serrano-Meneses M.A. 2013b. The characteristics of suckling stimulation determine the daily duration of motheryoung contact and milk output in rabbits. Dev. Psychobiol. 55: 809-817. https://doi.org/10.1002/dev.21071González-Mariscal G., Gallegos J.A. 2014. The maintenance and termination of maternal behavior in rabbits: Involvement of suckling and progesterone. Physiol. Behav., 124: 72-76. https://doi.org/10.1016/j.physbeh.2013.10.031González-Mariscal G., Caba M., Martínez-Gómez M., Bautista A., Hudson R. 2016. Mothers and offspring: The rabbit as a model system in the study of mammalian maternal behavior and sibling interactions. Horm. Behav., 77: 30-41. https://doi.org/10.1016/j.yhbeh.2015.05.011González-Mariscal G., Sisto Burt A., Nowak R. 2017. Behavioral and neuroendocrine indicators of well-being in farm and laboratory mammals. Pfaff D. & Joëlls M., eds. "Hormones, Brain and Behavior" 3a ed. Elsevier, 454-485. https://doi.org/10.1016/B978-0-12-803592-4.00017-1Graf S., Bigler L., Failing K., Würbel H., Buchwalder T. 2011. Regrouping rabbit does in a familiar or novel pen: Effects on agonistic behaviour, injuries and core body temperature. Appl. Anim. Behav. Sci., 135: 121-127. https://doi.org/10.1016/j.applanim.2011.10.009Hein D.J. 2019. Labordiagnostik bei Kleinsäugern: Präanalytik und tierartspezifische Befundung. Schlütersche. Hein J. 2014. Blutentnahme und Venenverweilkatheter beim Kaninchen. kleintier konkret 17: 23-25. https://doi.org/10.1055/s-0034-1384446Hoffman K.L., Martínez-Alvarez E., Rueda-Morales R.I. 2009. The inhibition of female rabbit sexual behavior by progesterone: Progesterone receptor-dependent and-independent effects. Horm. Behav., 55: 84-92. https://doi.org/10.1016/j.yhbeh.2008.08.011Holst D. von, Hutzelmeyer H., Kaetzke P., Khaschei M., Rödel H.G. 2002. Social rank, fecundity and lifetime reproductive success in wild European rabbits (Oryctolagus cuniculus). Behav. Ecol. Sociobiol., 51, 245-254. https://doi.org/10.1007/s00265-001-0427-1Hudson R., Shaal B., Bilkó Á., Altbäcker V. 1996. Just three minutes a day: The behaviour of young rabbits viewed in the context of limited maternal care. In Proc.: 6th World Rabbit Congress, July 1996, Toulouse, France, 2: 395-403.Hudson R., Shaal B., Martínez-Gómez M., Distel H. 2000. Mother-young relations in the European rabbit: physiological and behavioural locks and keys. World Rabbit Science 8: 85-90. https://doi.org/10.4995/wrs.2000.424Kosowska B., Strzała T., Moska M., Ratajszczak R., Dobosz T. 2015. Cytogenetic Examination of South American Tapirs, Tapirus Terrestris (Perissodactyla, Tapiridae), from the Wroclaw Zoological Garden. Vestnik Zoologii, 49: 529-536.Lebas F., Coudert P.,. de Rochambeau H.,. Thebault R.G. 1997. The rabbit - Husbandry, health and production. FAO Animal Production and Health Series No. 21.Maertens L., Rommers J., Jacquet M. 2011. Le logement des lapins en parcs, une alternative pour les cages classiques dans un système "duo"? [Combi-park housing of females, an alternative for the classical cages when using the "duo" management system?]. 14èmes Journées de la Recherche Cunicole, 85-88.Mann M.A., Svare B. 1982. Factors influencing pregnancy induced aggression in mice. Behav. Neural Biol., 36: 242-258. https://doi.org/10.1016/S0163-1047(82)90867-6Mann M.A., Konen C., Svare B. 1984. The role of progesterone in pregnancy-induced aggression in mice. Horm. Behav., 18: 140-160. https://doi.org/10.1016/0018-506X(84)90039-4Markvardsen S.N., Kjelgaard-Hansen M., Ritz C., SØrensen D.B. 2012. Less invasive blood sampling in the animal laboratory: Clinical chemistry and haematology of blood obtained by the triatominae bug Dipetalogaster maximus. Lab. Anim., 46: 136-141. https://doi.org/10.1258/la.2011.011063Mira-Escolano M.P., Mendiola J., Mínguez-Alarcón L., Melgarejo M., Cutillas-Tolín A., Roca M., López-Espín J.J., Noguera-Velasco J.A., Torres-Cantero A.M. 2014. Longer anogenital distance is associated with higher testosterone levels in women: a cross-sectional study. BJOG, 121: 1359-1364. https://doi.org/10.1111/1471-0528.12627Mugnai C., Dal Bosco A., Castellini C. 2009. Effect of different rearing systems and pre-kindling handling on behaviour and performance of rabbit does. Appl. Anim. Behav. Sci., 118: 91-100. https://doi.org/10.1016/j.applanim.2009.02.007Nielsen S.S., Alvarez J., Bicout D.J., Calistri P., Depner K., Drewe J.A., Garin-bastuji B., Luis J., Rojas G., Michel V., Angel M., Chueca M., Roberts H.C., Sihvonen L.H., Spoolder H., Stahl K., Calvo A.V., Viltrop A., Buijs S., Edwards S., Candiani D., Mosbach-schulz O. 2020. Health and welfare of rabbits farmed in different production systems, EFSA J., 18: 1-96. https://doi.org/10.2903/j.efsa.2020.5944O'Malley B. 2005. Rabbits. In: O'Malley B. (Ed.), Clinical Anatomy and Physiology of Exotic Species. Elsevier, New York, pp. 173-195. https://doi.org/10.1016/B978-070202782-6.50011-9Palanza P., Parmigiani S., Vom Saal F.S. 1995. Urine marking and maternal aggression of wild female mice in relation to anogenital distance at birth. Physiol. Behav., 58: 827-835. https://doi.org/10.1016/0031-9384(95)00107-TPalka Y.S., Sawyer C.H. 1966. The effects of hypothalamic implants of ovarian steroids on oestrous behaviour in rabbits. J. Physiol., 185: 251-269. https://doi.org/10.1113/jphysiol.1966.sp007986R Core Team, 2019., A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/Rödel H.G., Monclús R., von Holst D. 2006. Behavioral styles in European rabbits: Social interactions and responses to experimental stressors. Physiol. Behav., 89: 180-188. https://doi.org/10.1016/j.physbeh.2006.05.042Rödel H.G., Starkloff A., Bautista A., Friedrich A.C., Von Holst D. 2008. Infanticide and maternal offspring defence in European rabbits under natural breeding conditions. Ethology, 114: 22-31. https://doi.org/10.1111/j.1439-0310.2007.01447.xRommers J.M., Gunnink H., Klop A., De Jong I.C. 2011. Dynamics in aggressive behaviour of rabbit does in a group housing system: a descriptive study. In: 17th International Symposium on Housing and Diseases of Rabbits, Fur Providing Animals and Pet Animals, May 11-12. Celle, Germany, pp. 75-85.Rommers J.M., Reuvekamp B.J.F., Gunnink H., de Jong I.C. 2014. Effect of hiding places, straw and territory on aggression in group-housed rabbit does. Appl. Anim. Behav. Sci., 157: 117-126. https://doi.org/10.1016/j.applanim.2014.05.011Schönbrodt F.D., Perugini M. 2013. At what sample size do correlations stabilize? J. Res. Pers., 47: 609-612. https://doi.org/10.1016/j.jrp.2013.05.009Shargal D., Shore L., Roteri N., Terkel A., Zorovsky Y., Shemesh M., Steinberger Y. 2008. Fecal testosterone is elevated in high ranking female ibexes (Capra nubiana) and associated with increased aggression and a preponderance of male offspring. Theriogenology 69: 673-680. https://doi.org/10.1016/j.theriogenology.2007.11.017Simpson E.R. 2002. Aromatization of androgens in women: current concepts and findings. Fertil. Steril., 77: 6-10. https://doi.org/10.1016/S0015-0282(02)02984-9Squire L.R. 2009. Encyclopedia of Neuroscience, Volume 1. Academic Press. https://doi.org/10.1093/acprof:oso/9780195380101.003.0001Stadler A., Meiser C.K., Schaub G. a. 2011. "Living Syringes": use of Haematophagous Bugs as Blood Samplers from Small and Wild Animals. Nature Helps... 243-272. https://doi.org/10.1007/978-3-642-19382-8Szendrő Z., McNitt J.I., Matics Z., Mikó A., Gerencsér Z. 2016. Alternative and enriched housing systems for breeding does: A review. World Rabbit Sci., 24: 1-14. https://doi.org/10.4995/wrs.2016.3801Takahashi, Kayo, Hosoya T., Onoe K., Takashima T., Tanaka M., Ishii A., Nakatomi Y., Tazawa S., Takahashi, Kazuhiro, Doi H., Wada Y., Watanabe Y. 2018. Association between aromatase in human brains and personality traits. Sci. Rep., 8: 1-9. https://doi.org/10.1038/s41598-018-35065-4Theau-Clément M., Poujardien B., Bellereaud J. 1990. Influence des traitements lumineux, modes de reproduction et états physiologiques sur la productivité de lapines multipares. In: 5èmes Journées de La Recherche Cunicole, Dec 1990, Paris, France.Thomsen R., Voigt C.C. 2006. Non-invasive blood sampling from primates using laboratory-bred blood-sucking bugs (Dipetalogaster maximus; Reduviidae, Heteroptera). Primates, 47: 397-400. https://doi.org/10.1007/s10329-006-0194-8Trainor B.C., Bird I.M., Marler C.A. 2004. Opposing hormonal mechanisms of aggression revealed through short-lived testosterone manipulations and multiple winning experiences. Horm. Behav., 45: 115-121. https://doi.org/10.1016/j.yhbeh.2003.09.006Trainor B.C., Kyomen H.H., Marler C.A. 2006. Estrogenic encounters: How interactions between aromatase and the environment modulate aggression. Front. Neuroendocrinol., 27: 170-179. https://doi.org/10.1016/j.yfrne.2005.11.001Ubilla E., Rebollar P.G. 1995. Influence of the postpartum day on plasma estradiol-17 β levels, sexual behaviour, and conception rate, in artificially inseminated lactating rabbits. Anim. Reprod. Sci., 38: 337-344. https://doi.org/10.1016/0378-4320(94)01366-TVoigt C.C., Von Helversen O., Michener R.H., Kunz T.H. 2003. Validation of a Non-Invasive Blood-Sampling Technique for Doubly-Labelled Water Experiments. J. Exp. Zool. A Comp. Exp. Biol., 296: 87-97. https://doi.org/10.1002/jez.a.10121Voigt C.C., Faßbender M., Dehnhard M., Wibbelt G., Jewgenow K., Hofer H., Schaub G.A. 2004. Validation of a minimally invasive blood-sampling technique for the analysis of hormones in domestic rabbits, Oryctolagus cuniculus (Lagomorpha). Gen. Comp. Endocrinol., 135: 100-107. https://doi.org/10.1016/j.ygcen.2003.08.005Voigt C.C., Peschel U., Wibbelt G., Frölich K. 2006. An Alternative, Less Invasive Blood Sample Collection Technique for Serologic Studies Utilizing Triatomine Bugs (Heteroptera; Insecta). J. Wildl. Dis., 42: 466-469. https://doi.org/10.7589/0090-3558-42.2.466von Engelhard N., Kappeler P.M., Heistermann M. 2000. Androgen levels and female social dominance in Lemur catta. In Proc.: R. Soc. Lond. B, 267: 1533-1539. https://doi.org/10.1098/rspb.2000.1175Vos A.C., Müller T., Neubert L., Voigt C.C. 2010. Validation of a Less Invasive Blood Sampling Technique in Rabies Serology Using Reduviid Bugs (Triatominae, Hemiptera). J. Zoo. Wildl. Med., 41: 63-68. https://doi.org/10.1638/2009-0103.1Wingfield J.C., Hegner R.E., Dufty, Alfred M., Ball G.F. 1990. The "Challenge Hypothesis": Theoretical Implications for Patterns of Testosterone Secretion, Mating Systems, and Breeding Strategies. Am. Nat., 136: 829-846. https://doi.org/10.1086/285134Zomeño C., Birolo M., Zu A., Xiccato G., Trocino A. 2017. Aggressiveness in group-housed rabbit does: Influence of group size and pen characteristics. Appl. Anim. Behav. Sci., 194: 79-85. https://doi.org/10.1016/j.applanim.2017.05.016Zomeño C., Birolo M., Gratta F., Zuffellato A., Xiccato G., Trocino A. 2018. Effects of group housing system, pen floor type, and lactation management on performance and behaviour in rabbit does. Appl. Anim. Behav. Sci., 203: 55-63. https://doi.org/10.1016/j.applanim.2018.03.00

    Impact of concurrent pregnancy and lactation on maternal nestbuilding, estradiol and progesterone concentrations in rabbits

    Full text link
    [EN] We evaluated the impact of concurrent pregnancy and lactation on: nest-building (i.e., digging, straw-carrying, hair-pulling), food intake, milk output, body weight, and the concentration of estradiol and progesterone in blood. Digging was lower in pregnant-lactating (PL) rabbits, compared with pregnant-only (PO) does, on 21-23 d (52±64 vs. 104±86 g, respectively; mean±SD; P<0.05). Straw-carrying was also reduced in PL does on 24-26 d (9±27 vs. 79±94 g; P<0.005), 27-29 (27±56 vs. 99±77 g; P<0.005), and in the total amount of material introduced into the nest box (132±167 vs. 286±217 g; P<0.02). Hair-pulling was expressed by practically all animals. Food intake declined in PO does on the three days preceding parturition (P<0.01) and increased markedly during lactation; this increase was much larger in PL than in lactating-only (LO) rabbits (P<0.01). Milk output was similar between PL and LO does during the first 21 d of lactation but a marked decline in this parameter occurred in PL does from then until 30 d. The differences in nest-building between PL and PO rabbits may be related to the concentrations of estradiol and progesterone on specific days of pregnancy. PL does showed significantly higher estradiol levels than PO animals on pregnancy 1 d (33±13 vs. 23±4 pg/mL; P<0.02) and 21 (34±19 vs. 24±6 pg/mL; P<0.05) and also higher levels of progesterone on pregnancy 1 d (4±5 vs. 1±2 ng/mL; P<0.05). However, PL rabbits had lower levels of progesterone on 7 d (6±3 vs. 9±2 ng/mL; P<0.02) and 14 d (8±3 vs. 11±3 ng/mL; P<0.005) than PO does. Our results indicate that the unique endocrine milieu of PL rabbits has a direct bearing on specific behavioral and physiological phenomena that impact productivity on the farm.González-Mariscal, G.; Gallegos, J.; Sierra-Ramírez, A.; Garza Flores, J. (2009). Impact of concurrent pregnancy and lactation on maternal nestbuilding, estradiol and progesterone concentrations in rabbits. World Rabbit Science. 17(3):145-152. doi:10.4995/wrs.2009.65414515217

    Maternal behaviour and welfare of the domestic and wild rabbit doe and its litter

    Get PDF
    The European rabbit (Oryctolagus cuniculus), in addition to its faunal interest in the western Mediterranean, is a relevant species which in several European countries is the basis of a meat-oriented, industrial livestock subsector, while in many developing countries rabbits are raised under alternative systems aimed at income integration and food security. In addition to meat production, other productive orientations exist that generate a variety of rabbit production systems. This paper reviews the ethology of maternal behaviour of the breeding doe and her litter, including its endocrine regulation, both in wild animal and in industrial and alternative farming systems, and its relation to management factors, productivity and performance as well as the welfare of the species. It also discusses the implications of the regulations concerning animal welfare on housing, management and satisfaction of behavioural needs of breeding does and their litters, which in some countries tend to provide more space and environmental enrichment in cages

    Gentamicin sulphate permeation through porcine intestinal epithelial cell monolayer

    Get PDF
    Gentamicin is an aminoglycoside antibiotic widely used in combination with dimethyl sulphoxide (DMSO) in topical drug formulations. It is not known, however, whether DMSO can enhance the permeation of gentamicin through biological membranes, leading to oto- and nephrotoxic side effects. A simple and reliable high-performance liquid chromatographic (HPLC) method was applied for the quantitative determination of gentamicin collected from the apical and basolateral compartments of the porcine intestinal epithelial cell line IPEC-J2 cell monolayer using fluorometric derivatisation of the analyte with fluorenylmethyloxycarbonyl chloride (FMOC) prior to chromatographic run in the presence and absence of 1% DMSO. The lack of change in transepithelial electrical resistance (TER) demonstrated that gentamicin and 1% DMSO did not affect IPEC-J2 cell monolayer integrity via the disruption of cell membranes. Chromatographic data also ascertained that gentamicin penetration across the cell monolayer even in the presence of 1% DMSO was negligible at 6 h after the beginning of apical gentamicin administration. This study further indicates that the addition of this organic solvent does not increase the incidence of toxic effects related to gentamicin permeation

    Multimessenger Gamma-Ray and Neutrino Coincidence Alerts using HAWC and IceCube sub-threshold Data

    Full text link
    The High Altitude Water Cherenkov (HAWC) and IceCube observatories, through the Astrophysical Multimessenger Observatory Network (AMON) framework, have developed a multimessenger joint search for extragalactic astrophysical sources. This analysis looks for sources that emit both cosmic neutrinos and gamma rays that are produced in photo-hadronic or hadronic interactions. The AMON system is running continuously, receiving sub-threshold data (i.e. data that is not suited on its own to do astrophysical searches) from HAWC and IceCube, and combining them in real-time. We present here the analysis algorithm, as well as results from archival data collected between June 2015 and August 2018, with a total live-time of 3.0 years. During this period we found two coincident events that have a false alarm rate (FAR) of <1<1 coincidence per year, consistent with the background expectations. The real-time implementation of the analysis in the AMON system began on November 20th, 2019, and issues alerts to the community through the Gamma-ray Coordinates Network with a FAR threshold of <4<4 coincidences per year.Comment: 14 pages, 5 figures, 3 table

    The SuperCam Instrument Suite on the Mars 2020 Rover: Science Objectives and Mast-Unit Description

    Get PDF
    On the NASA 2020 rover mission to Jezero crater, the remote determination of the texture, mineralogy and chemistry of rocks is essential to quickly and thoroughly characterize an area and to optimize the selection of samples for return to Earth. As part of the Perseverance payload, SuperCam is a suite of five techniques that provide critical and complementary observations via Laser-Induced Breakdown Spectroscopy (LIBS), Time-Resolved Raman and Luminescence (TRR/L), visible and near-infrared spectroscopy (VISIR), high-resolution color imaging (RMI), and acoustic recording (MIC). SuperCam operates at remote distances, primarily 2-7 m, while providing data at sub-mm to mm scales. We report on SuperCam's science objectives in the context of the Mars 2020 mission goals and ways the different techniques can address these questions. The instrument is made up of three separate subsystems: the Mast Unit is designed and built in France; the Body Unit is provided by the United States; the calibration target holder is contributed by Spain, and the targets themselves by the entire science team. This publication focuses on the design, development, and tests of the Mast Unit; companion papers describe the other units. The goal of this work is to provide an understanding of the technical choices made, the constraints that were imposed, and ultimately the validated performance of the flight model as it leaves Earth, and it will serve as the foundation for Mars operations and future processing of the data.In France was provided by the Centre National d'Etudes Spatiales (CNES). Human resources were provided in part by the Centre National de la Recherche Scientifique (CNRS) and universities. Funding was provided in the US by NASA's Mars Exploration Program. Some funding of data analyses at Los Alamos National Laboratory (LANL) was provided by laboratory-directed research and development funds

    Multimessenger NuEM Alerts with AMON

    Get PDF
    The Astrophysical Multimessenger Observatory Network (AMON), has developed a real-time multi-messenger alert system. The system performs coincidence analyses of datasets from gamma-ray and neutrino detectors, making the Neutrino-Electromagnetic (NuEM) alert channel. For these analyses, AMON takes advantage of sub-threshold events, i.e., events that by themselves are not significant in the individual detectors. The main purpose of this channel is to search for gamma-ray counterparts of neutrino events. We will describe the different analyses that make-up this channel and present a selection of recent results
    corecore