558 research outputs found

    Exogenous Carbon Compounds Modulate Tomato Root Development

    Get PDF
    NO3 − is not only a nutrient, but also a signaling compound that plays an important role in several plant processes, like root development. The present study aimed to investigate the effect of three different exogenous C compounds (sucrose, glucose, 2-oxoglutarate) added to NO3 − nutrition on C/N, auxin and antioxidant metabolisms in 10-day-old tomato seedlings. Sucrose and glucose supplementation enhanced primary root (PR) length, lateral root number and root density, while 2-oxoglutarate negatively affected them. This phenomenon was accompanied by a slight increase in NRT2.1 and GS1 gene expression, together with an increase in LAX2 and LAX3 and a decrease in LAX4 in the roots growing under sucrose and glucose sources. The addition of 2-oxoglutarate enhanced the expression of NiR, GDH, PEPC1, LAX1, LAX3 and the antioxidant gene SOD Cl. Taken together, these findings contribute to a better understanding of how these C sources can modulate N uptake and C/N, auxin and antioxidant gene expression, which could be useful for improving nitrogen use efficienc

    Effect of Fattening Period Length on Intramuscular and Subcutaneous Fatty Acid Profiles in Iberian Pigs Finished in the Montanera Sustainable System

    Get PDF
    Twenty-four extensively reared Iberian pigs were used to study the influence of fattening period length (30, 60 or 90 days) on the fatty acid profiles of intramuscular and subcutaneous fat and the relationships between both profiles. Regarding fatty acid (FA) percentage, PUFA was greater in backfat and MUFA was greater in intramuscular fat (IMF), regardless of fattening period length. The longer fattening period increased MUFA content in backfat (which had a more marked change in oleic acid) and decreased PUFA content in backfat and IMF, but it did not affect SFA content. Within the three-layer subcutaneous backfat, SFA content was greater in the inner layer, MUFA was greater in the outer layer and PUFA was greater in both of these layers. The few differences in FA composition between both adipose tissues suggest that the changes due to the feeding regime are slow and, therefore, although the length of the fattening phase was increased, the fatty acid profile did not change substantially. The strong relationship between the FA profiles of IMF and backfat might be used to predict one profile from the other one when the latter is more readily available for sampling or analytical reasons

    Growth responses of Macrocystis pyrifera (Laminariales), Southern Chile, juvenile sporophytes to nutrient limitation

    Get PDF
    1st Mares Conference on Marine Ecosystems Health and Conservation. Olhão, Portugal 17-21 November 2014.Kelp forests represent some of the most conspicuous coastal habitats and today we recognize only one giant kelp species (Macrocystis pyrifera) distributed globally [1, 2]. M. pyrifera is recognized as a perennial kelp species with a low capacity of energy storage, whereas its high productivity is associated the availability of nitrogen from the water column [3]. The relation between M. pyrifera growth and biomass production results from a plastic response of the sporophytes to temporal and spatial variability in nitrogen availability [4, 5]. However, the low storage capacity of giant kelp [6, 7] is clearly disadvantageous during periods of suboptimal environmental conditions; as those that occur seasonally in California and the inland waters of southern Chile. Due to an increased demand for kelp biomass in Chile for the world alginate industry and abalone farming in Chile [8, 9] there is an increased demand of raw material and interest for developing kelp aquaculture technologies [10]. The present study evaluates the effect of different nitrogen availability on the growth and regeneration of juvenile fronds of M. pyrifera sporophytes from southern Chile and explore its consequences for the development of seeding strategies of kelp farming in southern Chile

    Putrescine biosynthetic pathways modulate root growth differently in tomato seedlings grown under different N sources

    Get PDF
    The biosynthesis of putrescine is mainly driven by arginine decarboxylase (ADC) and ornithine decarboxylase (ODC). Hence, in this study, we generated independent ADC and ODC transgenic silenced tomato lines (SilADC and SilODC, respectively) to test the effect of defective ADC and ODC gene expression on root development under nitrate (NN) or ammonium (NA) conditions. The results showed that SilODC seedlings displayed an increase in ADC expression that led to polyamine accumulation, suggesting a compensatory effect of ADC. However, this effect was not observed in SilADC seedlings. These pathways are involved in different growth processes. The SilADC seedlings showed an increase in fresh weight, shoot length, lateral root number and shoot:root ratio under the NN source and an enhancement in fresh weight, and shoot and root length under NA conditions. However, SilODC seedlings displayed greater weight and shoot length under the NN source, whereas a decrease in lateral root density was found under NA conditions. Moreover, two overexpressed ODC lines were generated to check the relevance of the compensatory effect of the ADC pathway when ODC was silenced. These overexpressed lines showed not only an enhancement of almost all the studied growth parameters under both N sources but also an amelioration of ammonium syndrome under NA conditions. Together, these results reflect the importance of both pathways in plant growth, particularly ODC silencing, which requires compensation by ADC induction.Funding for open access charge: CRUE-Universitat Jaume

    Rockfall Hazard Assessment in Volcanic Regions Based on ISVS and IRVS Geomechanical Indices

    Get PDF
    In volcanic regions, rockfalls represent a major hazard strongly conditioned by the geomechanical behaviour of volcanic materials, the geomorphological characteristics of the relief and the climatic conditions. Volcanic rocks possess very different properties to those of other lithological groups, presenting highly heterogeneous geomechanical behaviours. Nevertheless, they have received little research attention in the field of geological and geotechnical engineering. To date, the application of geomechanical classifications to characterise and estimate volcanic slope stability has not yielded reliable results, indicating the need to establish specific criteria for these rocks. Consequently, we developed indices to estimate rockfall susceptibility, hazard and risk in volcanic slopes. The index of susceptibility for volcanic slopes (ISVS) is designed to estimate slope susceptibility to instability, which is related to the level of hazard, while the index of risk for volcanic slopes (IRVS) is designed to estimate the level of risk as a function of the potential damage or economic loss caused as a result of rockfalls on slopes. Both indices were developed in order to provide an easily applied procedure that facilitates the adoption of short-term preventive measures against rockfalls. The indices were applied in Tenerife (Canary Islands), which presents exceptional conditions for analysing slope stability in volcanic rocks because of its mountainous orography with very steep slopes and a wide variety of materials. These conditions have frequently precipitated slope instability, causing significant damage to housing, beaches, roads and other infrastructures. After applying these indices to a number of slopes representative of the island’s wide variety of geological, geomorphological and climatic conditions, the results obtained were compared with the actual behaviour of the slopes, determined from extensive rockfall inventory data and in situ geomechanical survey

    1-Methyltryptophan Treatment Increases Defense-Related Proteins in the Apoplast of Tomato Plants

    Get PDF
    The activation of induced resistance in plants may enhance the production of defensive proteins to avoid the invasion of pathogens. In this way, the composition of the apoplastic fluid could represent an important layer of defense that plants can modify to avoid the attack. In this study, we performed a proteomic study of the apoplastic fluid from plants treated with the resistance inducer 1-methyltryptophan (1-MT) as well as infected with Pseudomonas syringae pv. tomato (Pst). Our results showed that both the inoculation with Pst and the application of the inducer provoke changes in the proteomic composition in the apoplast enhancing the accumulation of proteins involved in plant defense. Finally, one of the identified proteins that are overaccumulated upon the treatment have been expressed in Escherichia coli and purified in order to test their antimicrobial effect. The result showed that the tested protein is able to reduce the growth of Pst in vitro. Taken together, in this work, we described the proteomic changes in the apoplast induced by the treatment and by the inoculation, as well as demonstrated that the proteins identified have a role in the plant protection

    Putrescine Biosynthesis Inhibition in Tomato by DFMA and DFMO Treatment

    Get PDF
    This protocol can be used to inhibit the biosynthesis of polyamines, specifically putrescine, in tomato plants grown with NH4 + as a solely N source. In general, polyamines are positively charged small metabolites implicated in physiological processes, including organogenesis, embryogenesis, floral initiation and development, leaf senescence, pollen tube growth, fruit development and ripening and participate in the response to abiotic and biotic stresses (Tiburcio et al., 2014). Polyamines are synthesized from amino acids by decarboxylation of ornithine or arginine by ornithine decarboxylase (ODC) or arginine decarboxylase (ADC), respectively (Walters, 2003). Tomato plants grown with NH4 + as the sole N source presented an increase of putrescine content in leaves (Fernández-Crespo et al., 2015). To assess the importance of putrescine accumulation, DL-α-(Difluoromethyl)arginine (DFMA) and DL-α-(Difluoromethyl)ornithine (DFMO), inhibitors of putrescine synthesis, were used as irreversible inhibitors of ADC and ODC enzymes, respectively (Fallon and Phillips, 1988), with the purpose of reducing cellular putrescine accumulation induced by NH4 + nutrition. The inhibitor solution containing 2 mM DFMA and 5 mM DFMO was applied directly to each pot during the week prior to sample collection. Putrescine content was reduced by 35.3% in tomato plants grown with NH4 +.The work was supported by a grant from the Spanish Ministry of Science and Innovation (AGL2013- 49023-C-2-R

    Putrescine: A Key Metabolite Involved in Plant Development, Tolerance and Resistance Responses to Stress

    Get PDF
    Putrescine (Put) is the starting point of the polyamines (PAs) pathway and the most common PA in higher plants. It is synthesized by two main pathways (from ornithine and arginine), but recently a third pathway from citrulline was reported in sesame plants. There is strong evidence that Put may play a crucial role not only in plant growth and development but also in the tolerance responses to the major stresses affecting crop production. The main strategies to investigate the involvement of PA in plant systems are based on the application of competitive inhibitors, exogenous PAs treatments, and the most efficient approaches based on mutant and transgenic plants. Thus, in this article, the recent advances in understanding the role of this metabolite in plant growth promotion and protection against abiotic and biotic stresses will be discussed to provide an overview for future research

    1-Methyltryptophan Modifies Apoplast Content in Tomato Plants Improving Resistance Against Pseudomonas syringae

    Get PDF
    Plants can produce numerous natural products, many of which have been shown to confer protection against microbial attack. In this way, we identified 1-methyltryptophan (1-MT), a natural compound produced by tomato plants in response to Pseudomonas syringae attack, whose application by soil drench provided protection against this pathogen. In the present work, we have studied the mechanisms underlying this protection. The results demonstrated that 1-MT can be considered a new activator of plant defense responses that acts by inhibiting the stomatal opening produced by coronatine (COR) and could thereby, prevent bacteria entering the mesophyll. Besides, 1-MT acts by blocking the jasmonic acid (JA) pathway that, could avoid manipulation of the salicylic acid (SA) pathway by the bacterium, and thus hinder its growth. Although the concentration of 1-MT reached in the plant did not show antimicrobial effects, we cannot rule out a role for 1-MT acting alone because it affects the expression of the fliC gene that is involved in synthesis of the flagellum. These changes would result in reduced bacterium motility and, therefore, infective capacity. The results highlight the effect of a tryptophan derivative on induced resistance in plants
    corecore