315 research outputs found

    The central structure of Broad Absorption Line QSOs: observational characteristics in the cm-mm wavelength domain

    Get PDF
    Accounting for ~20% of the total QSO population, Broad Absorption Line QSOs are still an unsolved problem in the AGN context. They present wide troughs in the UV spectrum, due to material with velocities up to 0.2 c toward the observer. The two models proposed in literature try to explain them as a particular phase of the evolution of QSOs or as normal QSOs, but seen from a particular line of sight. We built a statistically complete sample of Radio-Loud BAL QSOs, and carried out an observing campaign to piece together the whole spectrum in the cm wavelength domain, and highlight all the possible differences with respect to a comparison sample of Radio-Loud non-BAL QSOs. VLBI observations at high angular resolution have been performed, to study the pc-scale morphology of these objects. Finally, we tried to detect a possible dust component with observations at mm-wavelengths. Results do not seem to indicate a young age for all BAL QSOs. Instead a variety of orientations and morphologies have been found, constraining the outflows foreseen by the orientation model to have different possible angles with respect to the jet axis

    Radio spectra and polarisation properties of a bright sample of radio-loud broad absorption line quasars

    Get PDF
    [Context]: The origin of broad-absorption-line quasi-stellar objects (BAL QSOs) remains unclear. Accounting for ∼20% of the QSO population, these objects have broad absorption lines in their optical spectra generated from outflows with velocities of up to 0.2 c. In this work, we present the results of a multi-frequency study of a well-defined radio-loud BAL QSO sample, and a comparison sample of radio-loud non-BAL QSOs, both selected from the Sloan Digital Sky Survey (SDSS). [Aims]: We aim to test which of the currently popular models of the BAL phenomenon - >orientation> or > evolutionary> - best accounts for the radio properties of BAL quasars. We also consider a third model in which BALs are produced by polar jets driven by radiation pressure. [Methods]: Observations from 1.4 to 43 GHz have been obtained with the VLA and Effelsberg telescopes, and data from 74 to 408 MHz have been compiled from the literature. The spectral indices give clues about the orientation, while the determination of the peak frequency can constrain the age, and test the evolutionary scenario, in which BAL QSOs are young QSOs. The fractional polarisation and the rotation measure in part reflect the local magnetic field strength and particle density. [Results]: The fractions of resolved sources in the BAL and non-BAL QSO samples are similar (16% versus (vs.) 12%). The resolved sources in the two samples have similar linear sizes (20 to 400 kpc) and morphologies. There is weak evidence that the fraction of variable sources amongst BAL QSOs is smaller. The fractions of candidate GHz-peaked sources are similar in the two samples (36 ± 12% vs. 23 ± 8%), suggesting that BAL QSOs are not generally younger than non-BAL QSOs. Both BAL and non-BAL QSOs have a wide range of spectral indices, including flat-spectrum and steep-spectrum sources, consistent with a broad range of orientations. There is weak evidence (91% confidence) that the spectral indices of the BAL QSOs are steeper than those of non-BAL QSOs, mildly favouring edge-on orientations. At a higher level of significance (≥97%), the spectra of BAL QSOs are no flatter than those of non-BAL QSOs, which suggests that a polar orientation is not preferred. The distributions of fractional polarisation in the two samples have similar median values (1-3%). The distributions of rotation measure are also similar, the only outlier being the BAL QSO 1624+37, which has an extreme rest-frame rotation measure (from the literature) of -18 350 ± 570 rad m-2. © ESO 2012.Part of this work was supported by a grant of the Italian Programme for Research of Relevant National Interest (PRIN No. 18/2007, PI: K.-H. Mack) The authors acknowledge financial support from the Spanish Ministerio de Ciencia e Innovación under project AYA2008-06311-C02-02. This work has benefited from research funding from the European Union’s sixth framework programme under RadioNet grant agreement No. 227290.Peer Reviewe

    A sample of radio-loud QSOs at redshift ~ 4

    Get PDF
    We obtained spectra of 60 red, starlike objects (E< 18.8) identified with FIRST radio sources, S_{1.4GHz} > 1 mJy. Eight are QSOs with redshift z> 3.6.Combined with our pilot search (Benn et al 2002), our sample of 121 candidates yields a total of 18 z > 3.6 QSOs (10 of these with z > 4.0). 8% of candidates with S_{1.4GHz} 10 mJy are QSOs with z > 3.6. The surface density of E 1mJy, z> 4 QSOs is 0.003 deg^{-2}. This is currently the only well-defined sample of radio-loud QSOs at z ~ 4 selected independently of radio spectral index. The QSOs are highly luminous in the optical (8 have M_B < -28, q_0 = 0.5, H_0 = 50 kms^{-1}Mpc^{-1}). The SEDs are as varied as those seen in optical searches for high-redshift QSOs, but the fraction of objects with weak (strongly self-absorbed) Ly alpha emission is marginally higher (3 out of 18) than for high-redshift QSOs from SDSS (5 out of 96).Comment: Accepted for publication in MNRAS, 9 pages, Latex, 5 postscript figures, 1 landscape table (postscript

    Studying the population of Radio-Loud Broad Absorption Line Quasars (BAL QSOs) from the Sloan Digital Sky Survey

    Get PDF
    Abstract Broad Absorption Lines (BALs) seem to be the most extreme manifestations of quasar (QSO) outflows. Two main scenarios have been proposed to explain the nature of BAL QSOs. They may be a physically distinct population (e.g., newborn or recently refuelled QSOs) or present in all QSOs but intercepted by only a fraction of the lines of sight to the QSOs. Our previous observations of a sample of 15 radio BAL QSOs show that they have convex radio spectra typical of GigaHertz Peaked-Spectrum (GPS) sources. We have selected a well-defined sample of radio bright BAL QSOs from the Sloan Digital Sky Survey -Data Release 5. Here we present preliminary results on radio continuum observations in full polarisation of this sample, taken with the 100-m Effelsberg radiotelescope at 2.7, 4.8, 8.4 and 10.5 GHz. The aim is to describe the radio spectra and polarisation characteristics of these radio bright BAL QSOs and compare them with our previous results from the study of a radio fainter sample of BAL QSOs and with the properties of normal QSOs where the BAL phenomenon is not seen

    Radio spectra and polarisation properties of a bright sample of Radio-Loud Broad Absorption Line Quasars

    Get PDF
    The origin of broad-absorption-line quasars (BAL QSOs) is still an open issue. Accounting for ~20% of the QSO population, these objects present broad absorption lines in their optical spectra generated from outflows with velocities up to 0.2c. In this work we present the results of a multi-frequency study of a well-defined radio-loud BAL QSO sample, and a comparison sample of radio-loud non-BAL QSOs, both selected from the Sloan Digital Sky Survey (SDSS). We aim to test which of the currently-popular models for the BAL phenomenon - `orientation' or 'evolutionary' - best accounts for the radio properties of BAL quasars. Observations from 1.4 to 43 GHz have been obtained with the VLA and Effelsberg telescopes, and data from 74 to 408 MHz have been compiled from the literature. The fractions of candidate GHz-peaked sources are similar in the two samples (36\pm12% vs 23\pm8%), suggesting that BAL QSOs are not generally younger than non-BAL QSOs. BAL and non-BAL QSOs show a large range of spectral indices, consistent with a broad range of orientations. There is weak evidence (91% confidence) that the spectral indices of the BAL QSOs are steeper than those of non-BAL QSOs, mildly favouring edge-on orientations. At a higher level of significance (\geq97%), the spectra of BAL QSOs are not flatter than those of non-BAL QSOs, which suggests that a polar orientation is not preferred.Comment: Accepted by A&

    Evaluación del riesgo medioambiental en sistemas agropecuarios

    Get PDF
    7 páginas, 5 figuras y 2 esquemasLas actividades agropecuarias, agricultura y ganadería, son motivo de consideración actual dentro de la investigación y valoración de riesgos ambientales debido a dos hechos relevantes: la utilización de plaguicidas y la generación de volúmenes importantes de desechos ganaderos. La generación de volúmenes de desechos ganaderos es una gran preocupación medioambiental y dado que existe poca investigación en la materia ha llevado a varios grupos de investigación a dedicar sus esfuerzos a este campo. El riesgo ambiental está basado en tres consideraciones: las características de toxicidad de la sustancia que se incorpora al medio, su comportamiento ambiental y su capacidad de contactar con un ser vivo (receptor biológico). Lo primero que salta a la vista es que estamos considerando una "mezcla compleja", sin embargo, los conceptos de riesgo son igualmente necesarios si pretendemos investigar "la probabilidad de que ocurra un daño por desechos ganaderos en el medio ambiente.CISA-INIA ValdeolmosETSI - Agrónomos U.P. MadridCentro de Ciencias Medioambientales- CSIC MadridPeer reviewe

    Radio spectra and polarisation properties of radio-loud Broad Absorption Line Quasars

    Full text link
    We present multi-frequency observations of a sample of 15 radio-emitting Broad Absorption Line Quasars (BAL QSOs), covering a spectral range between 74 MHz and 43 GHz. They display mostly convex radio spectra which typically peak at about 1-5 GHz (in the observer's rest-frame), flatten at MHz frequencies, probably due to synchrotron self-absorption, and become steeper at high frequencies, i.e., >~ 20 GHz. VLA 22-GHz maps (HPBW ~ 80 mas) show unresolved or very compact sources, with linear projected sizes of <= 1 kpc. About 2/3 of the sample look unpolarised or weakly polarised at 8.4 GHz, frequency in which reasonable upper limits could be obtained for polarised intensity. Statistical comparisons have been made between the spectral index distributions of samples of BAL and non-BAL QSOs, both in the observed and the rest-frame, finding steeper spectra among non-BAL QSOs. However constraining this comparison to compact sources results in no significant differences between both distributions. This comparison is consistent with BAL QSOs not being oriented along a particular line of sight. In addition, our analysis of the spectral shape, variability and polarisation properties shows that radio BAL QSOs share several properties common to young radio sources like Compact Steep Spectrum (CSS) or Gigahertz-Peaked Spectrum (GPS) sources.Comment: 18 pages, 11 Postscript figures, 12 Tables. Accepted for publication in MNRA
    corecore