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Abstract. Accounting for ∼20% of the total QSO population, Broad Absorption Line QSOs
are still an unsolved problem in the AGN context. They present wide troughs in the UV
spectrum, due to material with velocities up to 0.2 c toward the observer. The two models
proposed in literature try to explain them as a particular phase of the evolution of QSOs or as
normal QSOs, but seen from a particular line of sight.
We built a statistically complete sample of Radio-Loud BAL QSOs, and carried out an observing
campaign to piece together the whole spectrum in the cm wavelength domain, and highlight all
the possible differences with respect to a comparison sample of Radio-Loud non-BAL QSOs.
VLBI observations at high angular resolution have been performed, to study the pc-scale
morphology of these objects. Finally, we tried to detect a possible dust component with
observations at mm-wavelengths.
Results do not seem to indicate a young age for all BAL QSOs. Instead a variety of orientations
and morphologies have been found, constraining the outflows foreseen by the orientation model
to have different possible angles with respect to the jet axis.

1. Introduction

Broad Absorption Line (BAL) QSOs are a particular and not yet understood class of AGN: their
spectra show wide troughs towards the blue wing of some UV emission lines (Mg ii, Al iii, Si iv,
C iv), due to ionized gas with outflow velocities up to 0.2 c. They account for ∼20% of the QSO
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population. Two main scenarios have been considered to explain their nature: the orientation
model and the evolutionary one. The former, proposed by [6], foresees the BAL outflows to be
present in all QSOs, but visible only when intercepting the line of sight of the observer, thus a
particular orientation can be supposed for these objects. The latter model ([1, 7]) explains the
BAL phenomenon as a particular phase in the evolutionary sequence of QSOs, during which
a dusty shell is being expelled from the AGN. In this case a greater amount of dust emission
should be present with respect to normal QSOs. A third model from Punsly ([11, 12]) proposes
that the BAL phenomenon is due to polar winds above the inner jet, thus would be visible only
for lines of sight close to the jet axis.

In this framework the radio emission is an additional diagnostic tool to test the proposed
models. We selected a sample of Radio-Loud BAL QSOs, cross-correlating the fourth edition
of the SDSS Quasar Catalogue ([13]) with the FIRST catalogue ([2]), with a constraint of
S1.4 GHz > 30 mJy for the flux density at 1.4 GHz and 1.7 < z < 4.7 for the redshift, in order to
have sufficient flux density for VLBI studies and to allow the classification as BAL QSO through
the CIV and MgII lines in the optical band. The whole sample of 25 objects, together with a
comparison sample of 34 non-BAL QSOs, is presented in [4].

2. Radio Observations

In 2009-2010 we carried out an observational campaign to cover the cm-wavelength spectrum
of the two BAL and non-BAL QSO samples, using both single dish (100-m Effelsberg) and
interferometers (GMRT, VLA) in the frequency range from 240 MHz to 43 GHz. Our target
was the investigation of the differences between the two samples, aiming at determining which
of the three models is the most probable scenario for BAL QSOs. There are three observables
that can give clues about that: (1) the spectral index of the synchrotron spectrum is a statistical
indicator of the orientation of the source ([10]), since flatter spectral indices imply lines of sight
closer to the jet axis. If a particular orientation was present in BAL QSOs, the spectral index
distribution for the sample would be different with respect to the non-BAL sample; (2) the
synchrotron peak frequency is related to the age of the source, younger sources having a smaller
linear size and a higher peak frequency ([8]). If BAL QSOs were young objects in a particular
evolutionary phase, the ratio of Gigahertz-Peaked Spectrum (GPS) sources would be greater
than in the non-BAL sample; (3) polarization and Rotation Measure (RM) are indicative of
the magnetic field strength and particle density around the central environment of the AGN.
Finally, VLBI studies can help in determining the morphology and orientation of this particular
class of QSOs.

2.1. Spectra and polarization
We fitted the radio spectra of the sources through χ2 minimization, with a power law and a
parabola in the logSν − logν plane, in order to determine whether a synchrotron peak frequency
in the GigaHertz range was present. In some cases a low-frequency component was found,
likely corresponding to old components, and not indicating a young age for the source. We
found 9 BAL QSOs and 8 non-BAL QSOs showing a GPS, and thus a similar fraction of GPS
sources in the two samples (36% and 24%), but further observations are needed to confirm their
classification, since the angular resolution of the VLA in C configuration only allowed us to give
an upper limit of 20 kpc to the linear size in the 8 GHz maps, while the maximum size for a
GPS source is 1 kpc. Fits and spectra of the two samples can be found in [4].

The spectral index (defined as α1,2 = [(log S2 − log S1)/(log ν2 − log ν1)], where ν2 > ν1) was
calculated for all sources in the frequency interval 4.8-8.4 GHz and 8.4-22 GHz, i.e. well above
the peak frequency for all of them. A variety of spectral indices have been found, both flat
(α < 0.5) and steep (α > 0.5), suggesting a wide range of orientations for BAL QSOs, similar to
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Figure 1. Top panels: distribution of the radio spectral indices (α8.4
4.8 and α22

8.4) for the BAL
(black) and non-BAL (grey) QSO samples. Upper limits for BAL QSOs are in white. Bottom
panels: cumulative distribution of the fractional polarization for the two samples at three
frequencies. The pair of numbers in parenthesis indicates the number of detections and the
number of upper limits for each frequency. The dashed lines show the 50% percentile (i.e. the
median) and the 85% percentile.

the non-BAL QSO sample (see Fig. 1). A Kolmogorov-Smirnov test comparing the two spectral
index distributions α8.4

4.8 and α22
8.4 for BAL and non-BAL QSOs gives a low significance level (74%

and 0.3%) for the two to be different. Moreover, the same test gives a significative evidence that
BAL QSOs are not flatter than non-BAL QSOs, in contradiction to the hypothesis from [11, 12].

Measurements or upper limits of the fractional polarization (m) have been obtained for the
two samples, and a Kaplan-Meier estimator was used to compare the two, showing that the
cumulative distributions are very similar (see Fig. 1). The median value for m is in the range
1.8-2.5% for both samples. We calculated the RMs for all the sources with at least 3 values of m
at different frequencies (4 BAL QSOs and 10 non-BAL QSOs): they show similar values despite
the small statistics, the only outlier being BAL QSO 1624+37, with the second highest value of
RM among extra-galactic sources (RM=−18350±570 rad m−2, [3]).

2.2. Morphology and orientation
In 2009-2010 we obtained also high-resolution images for 11 BAL QSOs in VLBI technique with
the EVN (5 GHz) and VLBA (5, 8.4 GHz) arrays ([5]). 9 of 11 sources present a resolved
structure (82%), and various morphologies are visible (see Fig. 2). Double (0756+37, 1102+11),
core-jet (0044+00, 0816+48, 0849+27, 1304+13) and symmetric (1014+05, 1237+47, 1603+30)
structures have been found, so different orientations can be argued. Unresolved sources could
be beamed jets towards the observer or extremely young sources, like 1406+34. Projected linear
sizes are constrained under 1 kpc: this confirms the GPS classification for 0756+37, 1237+47
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Figure 2. High angular resolution maps of 11 BAL QSOs, obtained with the VLBA and the
EVN.

and 1603+30.
Four BAL QSOs were already resolved in VLA maps, showing 1 elongated (1103+11) and 3

core-lobes (0816+48, 0849+27, 1603+30) morphologies, with projected linear sizes between 20
and 200 kpc.
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Figure 2. Continued.

Astronomy at High Angular Resolution 2011 IOP Publishing
Journal of Physics: Conference Series 372 (2012) 012031 doi:10.1088/1742-6596/372/1/012031

5



3. Dust detection

In the mm-wavelength domain we performed observations with the IRAM-30m single dish (250
GHz) and with APEX (345 and 850 GHz), to detect the grey-body dust emission in the BAL
QSO sample. The amount of dust is one of the main differences in the two scenarios proposed
to explain the nature of BAL QSOs, since a young source, still expelling its dust cocoon, should
present an excess in the mm-band emission (in the redshift range of our sample). The two
observations were planned to detect the peak (850 GHz) and the power-law slope (240, 345
GHz) of this emission. We found 1 out of 14 observed sources (∼ 7%) showing a clear dust
component not correlated with the synchrotron emission (0756+37, see Fig. 3).

For this study we refer, as a comparison, to the dust emission study published by Omont et
al. for QSOs with z∼2 ([9]): they found that ∼ 25% of their sample shows hints of dust at 250
GHz. Since their study has been carried out with the same instrument, and obtaining a similar
RMS, we can safely compare with this result, concluding that Radio-Loud BAL QSOs does not
seem to present a larger fraction of dust-rich objects with respect to the QSO population.

More observations, already scheduled at APEX, will increase the statistic and thus the
reliability of these preliminary results.

4. Conclusions

We can summarize our findings as follows:

• A variety of orientation for BAL QSOs have been found, both from spectral index and from
VLBI morphology studies.

• Radio spectra do not seem to indicate a young age, since the fraction of GPS sources is
similar to non-BAL QSOs. Moreover, in some cases a low-frequency emission is present,
suggesting an old radio component.

• VLBI maps for 11 BAL QSOs show different morphologies and projected linear sizes under
1 kpc. Bigger linear sizes are not excluded for BAL QSOs, since 4 sources were already
resolved with the VLA, resulting in projected linear sizes between 20 and 200 kpc.

• Radio-Loud BAL QSOs do not seem to be dust-rich, since preliminary results only show
∼ 7% of the sources with a flux density excess in the mm-band, comparable with previous
findings for the QSO population.

Excluding a young age for Radio-Loud BAL QSOs, the most probable scenario seems to be
the one proposed by [6], but only if it can account for outflows with a variety of angles with
respect to the jet axis, able to justify the different orientations found in radio observations.
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