112 research outputs found

    Cloud Condensation Nuclei and Ice-Nucleating Particles Over Tropical and Subtropical Regions in the Northern Hemisphere

    Get PDF
    A change in atmospheric aerosol particles, especially cloud condensation nuclei (CCN) and ice-nucleating particles (INPs), is bound to impact cloud properties, precipitation and cloud radiative effects. In this thesis, two field campaigns were carried out in two representative locations, i.e. the anthropogenic polluted environment at Cyprus and the marine-dust intersect environment at Cabo Verde (a.k.a. Cape Verde) to understand the role of CCN and INPs over the tropical and subtropical regions in the northern hemisphere. On-line aerosol physical measurements were performed and samples from different environ- mental compartments were examined with respect to INPs: the oceanic sea surface microlayer (SML), underlying water (ULW), cloud water and atmospheric filters. Both measurement sites differ in aerosol properties, such as particle number size distribution, CCN and INP concentrations and CCN-derived particle hygroscopicity, due to different environment backgrounds and air mass origins. Aerosol particles at Cyprus were dominated by anthropogenic pollution, with small contributions of sea spray aerosol (SSA) and mineral dust. Particle aging process were observed through changes in CCN-derived particle hygroscopicity. New particle formation events with subsequent growth of the particles into the CCN size range were observed. INPs mainly originated from long-range transport. And anthropogenic pollution were found to be inefficient INPs at temperature range >−25 ◦C. However, aerosol particles at Cabo Verde featured a marine background with intrusions of dust. Dust and marine aerosols featured clearly different PNSDs. CCN number concentration at a supersaturation of 0.30% during the strongest observed dust periods was about 2.5 times higher than during marine periods. However, the CCN-derived hygroscopicity for marine and dust periods shows no significant difference. INPs at Cabo Verde were mainly in the supermicron size range, with a large contribution of biological particles. When comparing atmospheric INP number concentration to those found in seawater, it can be concluded that SSA only contributed a minor fraction to the atmospheric INP population.:1 Introduction 2 Methodology 3 Results and Discussion 4 Summary and Conclusions 5 Outlook Appendix BibliographyVeränderungen im atmosphärischen Aerosol, speziell bei Wolkenkondensationskernen (CCN) und eisnukleierenden Partikeln (INPs), haben Auswirkungen auf Wolkeneigenschaften wie Niederschlagsbildung und Strahlung. Für die hier vorgelegte Arbeit wurden zwei Feldmesskampagnen durchgeführt, im anthropogen verschmutzten Zypern und auf Cabo Verde (alias Kap Verde), einer Schnittstelle zwischen Meer und Wüste. Ziel war es, die Rolle von CCN und INPs in den tropischen und subtropischen Regionen der nördlichen Hemisphäre besser zu verstehen. Es wurden aerosol-physikalische online Messungen durchgeführt und verschiedene Proben auf INPs hin untersucht: die Meeresoberflächen-Mikroschicht (SML), das darunter liegende Wasser (ULW), das Wolkenwasser und atmosphärische Filter. Die beiden verschiedenen Orte an denen die Messkampagnen stattfanden unterscheiden sich in den Aerosoleigenschaften wie z.B. Partikelanzahlgrößenverteilung (PNSD), CCN- und INP-Konzentration und der von CCN abgeleiteten Partikelhygroskopizität. Grund hierfür sind Unterschiede in der Umgebung und der Luftmassenherkunft. Die Aerosolpartikel auf Zypern wurden von anthropogener Verschmutzung dominiert, mit kleinen Beiträgen von Partikeln aus Meeres-Gischt (SSA) und Mineralstaub. Partikelalterung ging einher mit einer Veränderung der Hygroskopizität der CCN. Partikelneubildung wurde beobachtet, mit anschließendem Wachstum der Partikel bis in den CCN-Größenbereich. INPs stammen hauptsächlich aus Ferntransport, und Partikel aus anthropogener Verschmutzung waren ineffiziente INPs im Temperaturbereich >−25 ◦C. Das Aerosol in Cabo Verde speiste sich sowohl aus marinen Quellen als auch aus Wüstenstaub. Staub und marines Aerosol wiesen sehr verschiedene PNSDs auf. Die CCN-Anzahlkonzentration bei 0,30% Übersättigung war während der stärksten Staubperioden etwa 2,5 Mal höher als während der marinen Perioden. Die aus CCN abgeleitete Hygroskopizität zeigte jedoch keinen signifikanten Unterschied für marine und Staubperioden. Die INPs in Cabo Verde waren zum Großteil größer als ein Mikrometer, und waren zum Großteil biogenen Ursprungs. Aus dem Vergleich der atmosphärischen INP-Anzahlkonzentration mit der im Meerwasser gefundenen kann man schließen, dass SSA nur einen geringen Anteil zur atmosphärischen INP-Population beitrug.:1 Introduction 2 Methodology 3 Results and Discussion 4 Summary and Conclusions 5 Outlook Appendix Bibliograph

    Characterization of aerosol properties at Cyprus, focusing on cloud condensation nuclei and ice-nucleating particles

    Get PDF
    As part of the A-LIFE (Absorbing aerosol layers in a changing climate: aging, LIFEtime and dynamics) campaign, ground-based measurements were carried out in Paphos, Cyprus, to characterize the abundance, properties, and sources of aerosol particles in general and cloud condensation nuclei (CCN) and ice-nucleating particles (INP) in particular. New particle formation (NPF) events with subsequent growth of the particles into the CCN size range were observed. Aitken mode particles featured κ values of 0.21 to 0.29, indicating the presence of organic materials. Accumulation mode particles featured a higher hygroscopicity parameter, with a median κ value of 0.57, suggesting the presence of sulfate and maybe sea salt particles mixed with organic carbon. A clear downward trend of κ with increasing supersaturation and decreasing dcrit was found. Super-micron particles originated mainly from sea-spray aerosol (SSA) and partly from mineral dust. INP concentrations (NINP) were measured in the temperature range from -6.5 to -26.5 °C, using two freezing array-type instruments. NINP at a particular temperature span around 1 order of magnitude below -20 °C and about 2 orders of magnitude at warmer temperatures (T > -18 °C). Few samples showed elevated concentrations at temperatures > -15 °C, which suggests a significant contribution of biological particles to the INP population, which possibly could originate from Cyprus. Both measured temperature spectra and NINP probability density functions (PDFs) indicate that the observed INP (ice active in the temperature range between -15 and -20 °C) mainly originate from long-range transport. There was no correlation between NINP and particle number concentration in the size range> 500 nm (N>500 nm). Parameterizations based on N>500 nm were found to overestimate NINP by about 1 to 2 orders of magnitude. There was also no correlation between NINP and particle surface area concentration. The ice active surface site density (ns) for the polluted aerosol encountered in the eastern Mediterranean in this study is about 1 to 3 orders of magnitude lower than the ns found for dust aerosol particles in previous studies. This suggests that observed NINP PDFs such as those derived here could be a better choice for modeling NINP if the aerosol particle composition is unknown or uncertain

    Automated identification of local contamination in remote atmospheric composition time series

    Get PDF
    Atmospheric observations in remote locations offer a possibility of exploring trace gas and particle concentrations in pristine environments. However, data from remote areas are often contaminated by pollution from local sources. Detecting this contamination is thus a central and frequently encountered issue. Consequently, many different methods exist today to identify local contamination in atmospheric composition measurement time series, but no single method has been widely accepted. In this study, we present a new method to identify primary pollution in remote atmospheric datasets, e.g., from ship campaigns or stations with a low background signal compared to the contaminated signal. The pollution detection algorithm (PDA) identifies and flags periods of polluted data in five steps. The first and most important step identifies polluted periods based on the derivative (time derivative) of a concentration over time. If this derivative exceeds a given threshold, data are flagged as polluted. Further pollution identification steps are a simple concentration threshold filter, a neighboring points filter (optional), a median, and a sparse data filter (optional). The PDA only relies on the target dataset itself and is independent of ancillary datasets such as meteorological variables. All parameters of each step are adjustable so that the PDA can be "tuned" to be more or less stringent (e.g., flag more or fewer data points as contaminated). The PDA was developed and tested with a particle number concentration dataset collected during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition in the central Arctic. Using strict settings, we identified 62 % of the data as influenced by local contamination. Using a second independent particle number concentration dataset also collected during MOSAiC, we evaluated the performance of the PDA against the same dataset cleaned by visual inspection. The two methods agreed in 94 % of the cases. Additionally, the PDA was successfully applied to a trace gas dataset (CO2), also collected during MOSAiC, and to another particle number concentration dataset, collected at the high-altitude background station Jungfraujoch, Switzerland. Thus, the PDA proves to be a useful and flexible tool to identify periods affected by local contamination in atmospheric composition datasets without the need for ancillary measurements. It is best applied to data representing primary pollution. The user-friendly and open-access code enables reproducible application to a wide suite of different datasets. It is available at https://doi.org/10.5281/zenodo.5761101 (Beck et al., 2021).Peer reviewe

    Concerted measurements of lipids in seawater and on submicron aerosol particles at the Cape Verde Islands: biogenic sources, selective transfer and high enrichments

    Get PDF
    Measurements of lipids as representative species for different lipid classes in the marine environment have been performed to characterize their oceanic sources and their transfer from the ocean into the atmosphere to marine aerosol particles. To this end, a set of lipid classes (hydrocarbons (HC), fatty acid methyl esters (ME), free fatty acids (FFA), alcohols (ALC), 1, 3-diacylglycerols (1, 3 DG), 1, 2-diacylglycerols (1, 2 DG), monoacylglycerols (MG), wax esters (WE), triacylglycerols (TG), phospholipids (PP) including phosphatidylglycerols (PG), phosphatidylethanolamine (PE), phosphatidylcholines (PC), glycolipids (GL) including sulfoquinovosyldiacylglycerols (SQDG), monogalactosyl-diacylglycerols (MGDG), digalactosyldiacylglycerols (DGDG) and sterols (ST)) is investigated in both the dissolved and particulate fraction in seawater, differentiated between underlying water (ULW) and the sea surface microlayer (SML), and in ambient submicron aerosol particle samples (PM1) at the Cape Verde Atmospheric Observatory (CVAO) applying concerted measurements. The different lipids are found in all marine compartments but in different compositions. At this point, a certain variability is observed for the concentration of dissolved (∑DLULW: 39.8–128.5 μg L−1, ∑DLSML: 55.7–121.5 μg L−1) and particulate (∑PLULW: 36.4–93.5 μg L−1, ∑PLSML: 61.0–118.1 μg L−1) lipids in seawater of the tropical North Atlantic Ocean along the campaign. Only slight SML enrichments are observed for the lipids with an enrichment factor EFSML of 1.1–1.4 (DL) and 1.0–1.7 (PL). On PM1 aerosol particles, a total lipid concentration between 75.2–219.5 ng m−3 (averaged: 119.9 ng m−3) is measured with high atmospheric concentration of TG (averaged: 21.9 ng m−3) as a potential indicator for freshly emitted sea spray. Besides phytoplankton sources, bacteria influence the lipid concentrations in seawater and on the aerosol particles, so that the phytoplankton tracer (chlorophyll-a) cannot sufficiently explain the lipid abundance. The concentration and enrichment of lipids in the SML is not related to physicochemical properties describing the surface activity. For aerosol, however, the high enrichment of lipids (as a sum) corresponds well with the consideration of their high surface activity, thus the EFaer (enrichment factor on submicron aerosol particles compared to SML) ranges between 9 × 104–7 × 105. Regarding the single lipid groups on the aerosol particles, a weak relation between EFaer and lipophilicity (expressed by the KOW value) was identified, which was absent for the SML. However, overall simple physico- chemical descriptors are not sufficient to fully explain the transfer of lipids. As our findings show that additional processes such as formation and degradation influence the ocean- atmosphere transfer of both OM in general and of lipids in particular, they have to be considered in OM transfer models. Moreover, our data suggest that the extend of enrichment of lipid classes constituents on the aerosol particles might be related to the distribution of the lipid within the bubble-air-water- interface. Lipids, which are preferably arranged within the bubble interface, namely TG and ALC, are transferred to the aerosol particles to the highest extend. Finally, the connection between ice nucleation particles (INP) in seawater, which are active already at higher temperatures (−10 °C to −15 °C), and the lipid classes PE and FFA suggests that lipids formed in the ocean have the potential to contribute to (biogenic) INP activity when transferred to the atmosphere
    • …
    corecore