742 research outputs found

    Evolution of Xylan Substitution Patterns in Gymnosperms and Angiosperms: Implications for Xylan Interaction with Cellulose.

    Get PDF
    The interaction between cellulose and xylan is important for the load-bearing secondary cell wall of flowering plants. Based on the precise, evenly spaced pattern of acetyl and glucuronosyl (MeGlcA) xylan substitutions in eudicots, we recently proposed that an unsubstituted face of xylan in a 2-fold helical screw can hydrogen bond to the hydrophilic surfaces of cellulose microfibrils. In gymnosperm cell walls, any role for xylan is unclear, and glucomannan is thought to be the important cellulose-binding polysaccharide. Here, we analyzed xylan from the secondary cell walls of the four gymnosperm lineages (Conifer, Gingko, Cycad, and Gnetophyta). Conifer, Gingko, and Cycad xylan lacks acetylation but is modified by arabinose and MeGlcA. Interestingly, the arabinosyl substitutions are located two xylosyl residues from MeGlcA, which is itself placed precisely on every sixth xylosyl residue. Notably, the Gnetophyta xylan is more akin to early-branching angiosperms and eudicot xylan, lacking arabinose but possessing acetylation on alternate xylosyl residues. All these precise substitution patterns are compatible with gymnosperm xylan binding to hydrophilic surfaces of cellulose. Molecular dynamics simulations support the stable binding of 2-fold screw conifer xylan to the hydrophilic face of cellulose microfibrils. Moreover, the binding of multiple xylan chains to adjacent planes of the cellulose fibril stabilizes the interaction further. Our results show that the type of xylan substitution varies, but an even pattern of xylan substitution is maintained among vascular plants. This suggests that 2-fold screw xylan binds hydrophilic faces of cellulose in eudicots, early-branching angiosperm, and gymnosperm cell walls.This work was supported by the Leverhulme Trust Centre for Natural Material Innovation (MBW, PD), The Low Carbon Energy University Alliance (AL), BBSRC Grant: BB/G016240/1 BBSRC Sustainable Bioenergy Centre cell wall sugars (TT, PD) and the Sao Paulo Research Foundation (RLS, CSP, MSS, TCFG) (Grants 2013/08293-7, 2014/10448-1 and 2015/25031-1)

    Identifying and explaining vibrational modes of sanbornite (low- BaSi2O5) and Ba5Si8O21: A joint experimental and theoretical study

    Get PDF
    We report here the analysis of vibrational properties of the sanbornite (low-BaSi2O5) and Ba5Si8O21 using theoretical and experimental approaches, as well as results of high temperature experiments up to 1100-1150 ̊C. The crystal parameters derived from Rietveld refinement and calculations show excellent agreement, within 4%, while the absolute mean difference between the theoretical and experimental results for the IR and Raman vibrational frequencies was <6 cm -1. The temperature-dependent Raman study renders that both sanbornite and Ba5Si8O21 display21 specific Ba and Si sites and their Ba-O and Si-O bonds. In the case of the stretching modes assigned to specific Si sites, the frequency dependence on the Si-O bond length exhibited very strong correlations. Both phases showed that for a change of 0.01 Å, the vibrational mode shifted 10 ± 2 cm-1. These results are promising for using Raman spectroscopy to track in situ reactions under a wide variety of conditions, especially during crystallization

    Uma análise do processo reconhecimento facial

    Get PDF
    É natural que os indivíduos portem documentos para se identificarem como o Registro Geral – R.G. e o Cadastro de Pessoa Física - CPF, para as práticas dos atos da vida civil, todavia, esse fato pode ser superado através da biometria. Dentre as técnicas de biometria mais citadas podemos mencionar: a impressão digital, retina, pulso ou reconhecimento facial, este por sua vez, está evoluindo de forma eficaz e aceitável principalmente pelo fato de ser um método pouco invasivo, ou seja, não impõe nenhuma condição para ocorrer a validação do reconhecimento

    The pattern of xylan acetylation suggests xylan may interact with cellulose microfibrils as a twofold helical screw in the secondary plant cell wall of Arabidopsis thaliana.

    Get PDF
    The interaction between xylan and cellulose microfibrils is important for secondary cell wall properties in vascular plants; however, the molecular arrangement of xylan in the cell wall and the nature of the molecular bonding between the polysaccharides are unknown. In dicots, the xylan backbone of β-(1,4)-linked xylosyl residues is decorated by occasional glucuronic acid, and approximately one-half of the xylosyl residues are O-acetylated at C-2 or C-3. We recently proposed that the even, periodic spacing of GlcA residues in the major domain of dicot xylan might allow the xylan backbone to fold as a twofold helical screw to facilitate alignment along, and stable interaction with, cellulose fibrils; however, such an interaction might be adversely impacted by random acetylation of the xylan backbone. Here, we investigated the arrangement of acetyl residues in Arabidopsis xylan using mass spectrometry and NMR. Alternate xylosyl residues along the backbone are acetylated. Using molecular dynamics simulation, we found that a twofold helical screw conformation of xylan is stable in interactions with both hydrophilic and hydrophobic cellulose faces. Tight docking of xylan on the hydrophilic faces is feasible only for xylan decorated on alternate residues and folded as a twofold helical screw. The findings suggest an explanation for the importance of acetylation for xylan-cellulose interactions, and also have implications for our understanding of cell wall molecular architecture and properties, and biological degradation by pathogens and fungi. They will also impact strategies to improve lignocellulose processing for biorefining and bioenergy.The work conducted by TT and NN was supported by a grant from the BBSRC: BB/G016240/1 BBSRC Sustainable Energy Centre Cell Wall Sugars Programme (BSBEC) to PD and DNB. The work of PD was supported by the European Community’s Seventh Framework Programme SUNLIBB (FP7/2007-2013) under the grant agreement #251132. The NMR facility infrastructure was supported by the BBSRC and the Wellcome Trust. TCFG thanks CNPq (Brazil) for a graduate fellowship (grant # 140978/2009-7). MSS thanks CEPROBIO (grant # 490022/2009- 0) and FAPESP for funding (grant #2013/08293-7).This is the accepted version of the following article: "Busse-Wicher, M; Gomes, T.C.F; Tryfona, T; Nikolovski, N; Stott, K; Grantham, N.J; Bolam, D.N; Skaf, M.S; Dupree, P. (2014) "The pattern of xylan acetylation suggests xylan may interact with cellulose microfibrils as a two-fold helical screw in the secondary plant cell wall of Arabidopsis thaliana." The Plant Journal. Accepted article [electronic] 10.1111/tpj.12575", which has been published in final form at http://onlinelibrary.wiley.com/doi/10.1111/tpj.12575/abstrac

    DESAFIOS E APRENDIZADOS DAS AÇÕES DE EDUCAÇÃO AMBIENTAL NA OCUPAÇÃO VISTA ALEGRE DO JUÁ, SANTARÉM, PARÁ

    Get PDF
    O recorrente aumento das zonas urbanas e a redução das áreas arborizadas acarretam baixa qualidade aos ambientes de convivência social. A educação ambiental entra como ferramenta auxiliadora de criação e manutenção dessas áreas. Com objetivo de contribuir para a qualidade ambiental em uma zona de ocupação irregular no município de Santarém, Pará, desenvolveu-se um trabalho de arborização, atrelando ações educativas, associando preservação e educação. Procedeu-se com a atividades de produção de mudas e plantio de espécies arbóreas, junto a práticas educacionais voltadas a educação ambiental, como discussão de temáticas ambientais. Foram desenvolvidas atividades de contação de histórias, construção de maquetes e desenhos, além de práticas de produção de mudas, compostagem, plantio e cuidados com as espécies arbóreas. Ocorreu contribuição significativa para com as crianças e jovens, na formação de uma consciência crítica, incentivando-as a agir de maneira mais ativa dentro do contexto abordado. Palavras-chave: Educação ambiental; produção de mudas; compostagem; consciência ecológica

    Chemical Composition and Fermentation Profile of Perennial Peanut and Marandu Grass Mixed Silages

    Get PDF
    Perennial peanut has high quality, evidenced by the improvement of animal production in grazing, due to good contents of crude protein and digestibility, which makes it one of the best alternatives for low cost feeding (Paganella and Valls 2002). Grass ensilage associated with legumes is considered an alternative to meet the protein demand of cattle in the livestock. However, due to limited information on the techniques of grass ensilage with tropical legumes, this research aimed to evaluate the chemical composition and the fermentation profile of perennial peanut and Marandu mixed grass silages, treated or not with bacterial inoculant

    Inhibition of phosphodiesterase 5 restores endothelial function in renovascular hypertension

    Get PDF
    Background: the clipping of an artery supplying one of the two kidneys (2K1C) activates the renin-angiotensin (Ang) system (RAS), resulting in hypertension and endothelial dysfunction. Recently, we demonstrated the intrarenal beneficial effects of sildenafil on the high levels of Ang II and reactive oxygen species (ROS) and on high blood pressure (BP) in 2K1C mice. Thus, in the present study, we tested the hypothesis that sildenafil improves endothelial function in hypertensive 2K1C mice by improving the NO/ROS balance.Methods: 2K1C hypertension was induced in C57BL/6 mice. Two weeks later, they were treated with sildenafil (40 mg/kg/day, via oral) or vehicle for 2 weeks and compared with sham mice. At the end of the treatment, the levels of plasma and intrarenal Ang peptides were measured. Endothelial function and ROS production were assessed in mesenteric arterial bed (MAB).Results: the 2K1C mice exhibited normal plasma levels of Ang I, II and 1-7, whereas the intrarenal Ang I and II were increased (similar to 35% and similar to 140%) compared with the Sham mice. Sildenafil normalized the intrarenal Ang I and II and increased the plasma (similar to 45%) and intrarenal (+15%) Ang 1-7. the 2K1C mice exhibited endothelial dysfunction, primarily due to increased ROS and decreased NO productions by endothelial cells, which were ameliorated by treatment with sildenafil.Conclusion: These data suggest that the effects of sildenafil on endothelial dysfunction in 2K1C mice may be due to interaction with RAS and restoring NO/ROS balance in the endothelial cells from MAB. Thus, sildenafil is a promising candidate drug for the treatment of hypertension accompanied by endothelial dysfunction and kidney disease.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)State Agency for the Development of Science and Technology (FAPES/Universal)Univ Fed Espirito Santo, Hlth Sci Ctr, Lab Translat Physiol, Vitoria, ES, BrazilEmescam Sch Hlth Sci, Vitoria, ES, BrazilUniversidade Federal de São Paulo, Dept Med, Div Nephrol, São Paulo, BrazilUniv Fed Espirito Santo, Hlth Sci Ctr, Pharmaceut Sci Grad Program, Vitoria, ES, BrazilUniv Fed Paraiba, Hlth Sci Ctr, Dept Physiol & Pathol, BR-58059900 Joao Pessoa, PB, BrazilUVV, Pharmaceut Sci Grad Program, Vila Velha, ES, BrazilFed Inst Educ Sci & Technol IFES, Vila Velha, ES, BrazilUniversidade Federal de São Paulo, Dept Med, Div Nephrol, São Paulo, BrazilCNPq: 302582/2011-8CNPq: 476525/2012-8CNPq: 305188/2012-7CNPq: 473177/2013-7State Agency for the Development of Science and Technology (FAPES/Universal): 012/2011State Agency for the Development of Science and Technology (FAPES/Universal): 54498465CNPq: 012/2009Web of Scienc

    One-Step Isolation of Monoterpene Indole Alkaloids from Psychotria Leiocarpa Leaves and Their Antiviral Activity on Dengue Virus Type-2

    Get PDF
    The leaf MeOH extract of Psychotria leiocarpa (Rubiaceae) showed in vitro non-cytotoxic and anti-dengue virus serotype 2 (DENV2) activity in human hepatocarcinoma cell lineage (HepG2). A one-step and cost-effective reversed-phase solid-phase extraction method based on high-performance liquid chromatography (HPLC) parameters allowed the isolation, directly from this bioactive extract, of the monoterpene indole alkaloids: N-glucopyranosyl vincosamide (1), vincosamide (2) and strictosidinic acid (3). The chemical structures were characterized based on 1D and 2D nuclear magnetic resonance (NMR), UV and high-resolution mass spectra (HRMS). The methodology has also allowed yielding a polyphenolic-rich fraction that was analyzed by high-performance liquid chromatography coupled to diode array detection and electrospray ionization tandem mass spectrometry (HPLC-DAD-ESI-MS/MS) revealing two fiavonol triglycosides (4, 5) and three caffeoylquinic acid isomers (6-8). Compound 3 is reported for the first time in P leiocarpa and all the phenolic compounds (4-8) are described for the first time in the genus Psychotria. Compounds 1-3 showed to be non-cytotoxic and anti-dengue active towards DENV2, highlighting vincosamide (2).This work was supported by Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro (FAPERJ), processes No. E-26/111.373/2014 and E-26/203.225/2017. DGL and JOC thank Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES), finance code 001, for their fellowships. TW thanks both CAPES and FAPERJ for his fellowships. The authors thank the NMR Lab of the Instituto de Pesquisas em Produtos Naturais, Universidade Federal do Rio de Janeiro for the NMR spectra and MSc Matheus Oliveira, Dr Marcelo M. Pereira and Dr Denise Freire for their support. Technical and staff support provided by SGIker (UPV/EHU, MICINN, GV/EJ, ESF) is also gratefully acknowledged
    corecore