13 research outputs found

    Human-umbilical cord matrix mesenchymal cells improved left ventricular contractility independently of infarct size in swine myocardial infarction with reperfusion

    Get PDF
    Funding Information: This work was funded by: i) national funds through FCT - Portuguese Foundation for Science and Technology, under the scope of the Cardiovascular R&D Center - UnIC (UIDB/00051/2020 and UIDP/00051/2020); ii) “la Caixa” Banking Foundation and FCT under the project code LCF/PR/HP17/52190002”; iii) the QREN project 2013/30196; and iv) the European Structural and Investment Funds (ESIF), under the Lisbon Portugal Regional Operational Program and National Funds through FCT [POCI-01-0145-FEDER-030985]. RNG and TLL were funded by the FCT individual fellowships [SFRH/BD/144490/2019] and [PD/BD/127997/2016], respectively. Funding sources had no interference in the design of the study, study governance, data collection and analysis, nor in manuscript writing or its scientific and intellectual content. Publisher Copyright: 2023 Raposo, Cerqueira, Leite, Moreira-Costa, Laundos, Miranda, Mendes-Ferreira, Coelho, Gomes, Pinto-do-Ó, Nascimento, Lourenço, Cardim and Leite-Moreira.Background: Human umbilical cord matrix-mesenchymal stromal cells (hUCM-MSC) have demonstrated beneficial effects in experimental acute myocardial infarction (AMI). Reperfusion injury hampers myocardial recovery in a clinical setting and its management is an unmet need. We investigated the efficacy of intracoronary (IC) delivery of xenogeneic hUCM-MSC as reperfusion-adjuvant therapy in a translational model of AMI in swine. Methods: In a placebo-controlled trial, pot-belied pigs were randomly assigned to a sham-control group (vehicle-injection; n = 8), AMI + vehicle (n = 12) or AMI + IC-injection (n = 11) of 5 × 105 hUCM-MSC/Kg, within 30 min of reperfusion. AMI was created percutaneously by balloon occlusion of the mid-LAD. Left-ventricular function was blindly evaluated at 8-weeks by invasive pressure-volume loop analysis (primary endpoint). Mechanistic readouts included histology, strength-length relationship in skinned cardiomyocytes and gene expression analysis by RNA-sequencing. Results: As compared to vehicle, hUCM-MSC enhanced systolic function as shown by higher ejection fraction (65 ± 6% vs. 43 ± 4%; p = 0.0048), cardiac index (4.1 ± 0.4 vs. 3.1 ± 0.2 L/min/m2; p = 0.0378), preload recruitable stroke work (75 ± 13 vs. 36 ± 4 mmHg; p = 0.0256) and end-systolic elastance (2.8 ± 0.7 vs. 2.1 ± 0.4 mmHg*m2/ml; p = 0.0663). Infarct size was non-significantly lower in cell-treated animals (13.7 ± 2.2% vs. 15.9 ± 2.7%; Δ = −2.2%; p = 0.23), as was interstitial fibrosis and cardiomyocyte hypertrophy in the remote myocardium. Sarcomere active tension improved, and genes related to extracellular matrix remodelling (including MMP9, TIMP1 and PAI1), collagen fibril organization and glycosaminoglycan biosynthesis were downregulated in animals treated with hUCM-MSC. Conclusion: Intracoronary transfer of xenogeneic hUCM-MSC shortly after reperfusion improved left-ventricular systolic function, which could not be explained by the observed extent of infarct size reduction alone. Combined contributions of favourable modification of myocardial interstitial fibrosis, matrix remodelling and enhanced cardiomyocyte contractility in the remote myocardium may provide mechanistic insight for the biological effect.publishersversionpublishe

    Human-umbilical cord matrix mesenchymal cells improved left ventricular contractility independently of infarct size in swine myocardial infarction with reperfusion

    Get PDF
    BackgroundHuman umbilical cord matrix-mesenchymal stromal cells (hUCM-MSC) have demonstrated beneficial effects in experimental acute myocardial infarction (AMI). Reperfusion injury hampers myocardial recovery in a clinical setting and its management is an unmet need. We investigated the efficacy of intracoronary (IC) delivery of xenogeneic hUCM-MSC as reperfusion-adjuvant therapy in a translational model of AMI in swine.MethodsIn a placebo-controlled trial, pot-belied pigs were randomly assigned to a sham-control group (vehicle-injection; n = 8), AMI + vehicle (n = 12) or AMI + IC-injection (n = 11) of 5 × 105 hUCM-MSC/Kg, within 30 min of reperfusion. AMI was created percutaneously by balloon occlusion of the mid-LAD. Left-ventricular function was blindly evaluated at 8-weeks by invasive pressure-volume loop analysis (primary endpoint). Mechanistic readouts included histology, strength-length relationship in skinned cardiomyocytes and gene expression analysis by RNA-sequencing.ResultsAs compared to vehicle, hUCM-MSC enhanced systolic function as shown by higher ejection fraction (65 ± 6% vs. 43 ± 4%; p = 0.0048), cardiac index (4.1 ± 0.4 vs. 3.1 ± 0.2 L/min/m2; p = 0.0378), preload recruitable stroke work (75 ± 13 vs. 36 ± 4 mmHg; p = 0.0256) and end-systolic elastance (2.8 ± 0.7 vs. 2.1 ± 0.4 mmHg*m2/ml; p = 0.0663). Infarct size was non-significantly lower in cell-treated animals (13.7 ± 2.2% vs. 15.9 ± 2.7%; Δ = −2.2%; p = 0.23), as was interstitial fibrosis and cardiomyocyte hypertrophy in the remote myocardium. Sarcomere active tension improved, and genes related to extracellular matrix remodelling (including MMP9, TIMP1 and PAI1), collagen fibril organization and glycosaminoglycan biosynthesis were downregulated in animals treated with hUCM-MSC.ConclusionIntracoronary transfer of xenogeneic hUCM-MSC shortly after reperfusion improved left-ventricular systolic function, which could not be explained by the observed extent of infarct size reduction alone. Combined contributions of favourable modification of myocardial interstitial fibrosis, matrix remodelling and enhanced cardiomyocyte contractility in the remote myocardium may provide mechanistic insight for the biological effect

    Origin and Epidemiological History of HIV-1 CRF14_BG

    Get PDF
    This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Users must also make clear the license terms under which the work was published. CC BY Licence: http://creativecommons.org/licenses/by/4.0/Background: CRF14_BG isolates, originally found in Spain, are characterized by CXCR4 tropism and rapid disease progression. This study aimed to identify the origin of CRF14_BG and reconstruct its epidemiological history based on new isolates from Portugal.Methodology/Principal Findings: C2V3C3 env gene sequences were obtained from 62 samples collected in 1993–1998 from Portuguese HIV-1 patients. Full-length genomic sequences were obtained from three patients. Viral subtypes, diversity, divergence rate and positive selection were investigated by phylogenetic analysis. The molecular structure of the genomes was determined by bootscanning. A relaxed molecular clock model was used to date the origin of CRF14_BG. Geno2pheno was used to predict viral tropism. Subtype B was the most prevalent subtype (45 sequences; 73%) followed by CRF14_BG (8; 13%), G (4; 6%), F1 (2; 3%), C (2; 3%) and CRF02_AG (1; 2%). Three CRF14_BG sequences were derived from 1993 samples. Near full-length genomic sequences were strongly related to the CRF14_BG isolates from Spain. Genetic diversity of the Portuguese isolates was significantly higher than the Spanish isolates (0.044 vs 0.014, P,0.0001). The mean date of origin of the CRF14_BG cluster was estimated to be 1992 (range, 1989 and 1996) based on the subtype G genomic region and 1989 (range, 1984–1993) based on the subtype B genomic region. Most CRF14_BG strains (78.9%) were predicted to be CXCR4. Finally, up to five amino acids were under selective pressure in subtype B V3 loop whereas only one was found in the CRF14_BG cluster.Conclusions: CRF14_BG emerged in Portugal in the early 1990 s soon after the beginning of the HIV-1 epidemics, spread to Spain in late 1990 s as a consequence of IVDUs migration and then to the rest of Europe. CXCR4 tropism is a general characteristic of this CRF that may have been selected for by escape from neutralizing antibody response

    Major Depletion of Plasmacytoid Dendritic Cells in HIV-2 Infection, an Attenuated Form of HIV Disease

    Get PDF
    Plasmacytoid dendritic cells (pDC) provide an important link between innate and acquired immunity, mediating their action mainly through IFN-α production. pDC suppress HIV-1 replication, but there is increasing evidence suggesting they may also contribute to the increased levels of cell apoptosis and pan-immune activation associated with disease progression. Although having the same clinical spectrum, HIV-2 infection is characterized by a strikingly lower viremia and a much slower rate of CD4 decline and AIDS progression than HIV-1, irrespective of disease stage. We report here a similar marked reduction in circulating pDC levels in untreated HIV-1 and HIV-2 infections in association with CD4 depletion and T cell activation, in spite of the undetectable viremia found in the majority of HIV-2 patients. Moreover, the same overexpression of CD86 and PD-L1 on circulating pDC was found in both infections irrespective of disease stage or viremia status. Our observation that pDC depletion occurs in HIV-2 infected patients with undetectable viremia indicates that mechanisms other than direct viral infection determine the pDC depletion during persistent infections. However, viremia was associated with an impairment of IFN-α production on a per pDC basis upon TLR9 stimulation. These data support the possibility that diminished function in vitro may relate to prior activation by HIV virions in vivo, in agreement with our finding of higher expression levels of the IFN-α inducible gene, MxA, in HIV-1 than in HIV-2 individuals. Importantly, serum IFN-α levels were not elevated in HIV-2 infected individuals. In conclusion, our data in this unique natural model of “attenuated” HIV immunodeficiency contribute to the understanding of pDC biology in HIV/AIDS pathogenesis, showing that in the absence of detectable viremia a major depletion of circulating pDC in association with a relatively preserved IFN-α production does occur

    PD-1 and its ligand PD-L1 are progressively up-regulated on CD4 and CD8 T-cells in HIV-2 infection irrespective of the presence of viremia.

    No full text
    © 2012 Wolters Kluwer Health | Lippincott Williams & WilkinsObjective: Hyper-immune activation is a main determinant of HIV disease progression, potentially counter-acted by T-cell inhibitory pathways. Here we investigated, for the first time, inhibitory molecules in HIV-2 infection, a naturally occurring attenuated form of HIV disease, associated with reduced viremia and very slow rates of CD4 T-cell decline. Design: Programmed death (PD)-1/PD-L1, an important pathway in limiting immunopathology, and its possible relationship with T-cell immunoglobulin and mucin-domain containing molecule-3 (TIM-3), a recently identified inhibitory molecule, were studied in untreated HIV-2 and HIV-1 cohorts, matched for degree of CD4 T-cell depletion, and noninfected individuals. Methods: Flow cytometric analysis of T-cell expression of PD-1, PD-L1 and TIM-3, combined with markers of cell differentiation, activation, cycling and survival. Statistical analysis was performed using ANOVA, Mann–Whitney/Wilcoxon tests, Spearman's correlations, multiple linear regressions and canonical correlation analysis. Results: T-cell expression of PD-1 and PD-L1 was tightly associated and directly correlated with CD4 T-cell depletion and immune activation in HIV-2 infection. No such correlation was found for PD-L1 expression in HIV-1-positive patients. Central memory and intermediate memory cells, rather than terminally differentiated T-cells, expressed the highest levels of both PD-1 and PD-L1 molecules. Conversely, TIM-3 expression was independent of T-cell differentiation and dissociated from cell cycling, suggesting distinct induction mechanisms. Importantly, in contrast with HIV-1, no significant increases in TIM-3 expression were found in the HIV-2 cohort. Conclusions: Our data suggest that PD-1/PD-L1 molecules, rather than markers of T-cell exhaustion, may act as modulators of T-cell immune activation, contributing to the slower course of HIV-2 infection. These data have implications for the design of antiretroviral therapy-complementary immune-based strategies.The work was supported by grants from ‘Fundação para a CiĂȘncia e a Tecnologia’ (FCT) and by ‘Programa Operacional CiĂȘncia e Inovação 2010’ (POCI2010), as well as from Fundação Calouste Gulbenkian to A.E.S. R.T., R.B.F., R.S.S., and R.C. received scholarships from FCT

    Cell-Associated Viral Burden Provides Evidence of Ongoing Viral Replication in Aviremic HIV-2-Infected Patients▿

    Get PDF
    Viremia is significantly lower in HIV-2 than in HIV-1 infection, irrespective of disease stage. Nevertheless, the comparable proviral DNA burdens observed for these two infections indicate similar numbers of infected cells. Here we investigated this apparent paradox by assessing cell-associated viral replication. We found that untreated HIV-1-positive (HIV-1+) and HIV-2+ individuals, matched for CD4 T cell depletion, exhibited similar gag mRNA levels, indicating that significant viral transcription is occurring in untreated HIV-2+ patients, despite the reduced viremia (undetectable to 2.6 × 104 RNA copies/ml). However, tat mRNA transcripts were observed at significantly lower levels in HIV-2+ patients, suggesting that the rate of de novo infection is decreased in these patients. Our data also reveal a direct relationship of gag and tat transcripts with CD4 and CD8 T cell activation, respectively. Antiretroviral therapy (ART)-treated HIV-2+ patients showed persistent viral replication, irrespective of plasma viremia, possibly contributing to the emergence of drug resistance mutations, persistent hyperimmune activation, and poor CD4 T cell recovery that we observed with these individuals. In conclusion, we provide here evidence of significant ongoing viral replication in HIV-2+ patients, further emphasizing the dichotomy between amount of plasma virus and cell-associated viral burden and stressing the need for antiretroviral trials and the definition of therapeutic guidelines for HIV-2 infection

    Monocyte and myeloid dendritic cell activation occurs throughout HIV type 2 infection, an attenuated form of HIV disease.

    No full text
    © The Author 2013. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved.Monocytes and myeloid dendritic cells (mDCs) are important orchestrators of innate and human immunodeficiency virus (HIV)-specific immune responses and of the generalized inflammation that characterizes AIDS progression. To our knowledge, we are the first to investigate monocyte and mDC imbalances in HIV type 2 (HIV-2)-positive patients, who typically feature reduced viremia and slow disease progression despite the recognized ability of HIV-2 to establish viral reservoirs and overcome host restriction factors in myeloid cells. We found a heightened state of monocyte and mDC activation throughout HIV-2 infection (characterized by CD14(bright)CD16(+) expansion, as well as increased levels of soluble CD14, HLA-DR, and CD86), together with progressive mDC depletion. Importantly, HIV-2-positive patients also featured overexpression of the inhibitory molecule PD-L1 on monocytes and mDCs, which may act by limiting the production of proinflammatory molecules. These data, from patients with a naturally occurring form of attenuated HIV disease, challenge current paradigms regarding the role of monocytes in HIV/AIDS and open new perspectives regarding potential strategies to modulate inflammatory states.This work was supported by the Fundação para a CiĂȘncia e a Tecnologia (scholarships to R. C., R. T., R. B. F. and R. S. S.), the Programa Operacional CiĂȘncia e Inovação 2010, and the Fundação Calouste Gulbenkian (to A. E. S.)
    corecore