226 research outputs found

    Structural Basis for the Recognition of Cellular mRNA Export Factor REF by Herpes Viral Proteins HSV-1 ICP27 and HVS ORF57

    Get PDF
    The herpesvirus proteins HSV-1 ICP27 and HVS ORF57 promote viral mRNA export by utilizing the cellular mRNA export machinery. This function is triggered by binding to proteins of the transcription-export (TREX) complex, in particular to REF/Aly which directs viral mRNA to the TAP/NFX1 pathway and, subsequently, to the nuclear pore for export to the cytoplasm. Here we have determined the structure of the REF-ICP27 interaction interface at atomic-resolution and provided a detailed comparison of the binding interfaces between ICP27, ORF57 and REF using solution-state NMR. Despite the absence of any obvious sequence similarity, both viral proteins bind on the same site of the folded RRM domain of REF, via short but specific recognition sites. The regions of ICP27 and ORF57 involved in binding by REF have been mapped as residues 104–112 and 103–120, respectively. We have identified the pattern of residues critical for REF/Aly recognition, common to both ICP27 and ORF57. The importance of the key amino acid residues within these binding sites was confirmed by site-directed mutagenesis. The functional significance of the ORF57-REF/Aly interaction was also probed using an ex vivo cytoplasmic viral mRNA accumulation assay and this revealed that mutants that reduce the protein-protein interaction dramatically decrease the ability of ORF57 to mediate the nuclear export of intronless viral mRNA. Together these data precisely map amino acid residues responsible for the direct interactions between viral adaptors and cellular REF/Aly and provide the first molecular details of how herpes viruses access the cellular mRNA export pathway

    Orthogonal techniques to study the effect of pH, sucrose and arginine salts on monoclonal antibody physical stability and aggregation during long-term storage

    Get PDF
    Understanding the effects of additives on therapeutic protein stability is of paramount importance for obtaining stable formulations. In this work, we apply several high- and medium-throughput methods to study the physical stability of a model monoclonal antibody at pH 5.0 and 6.5 in the presence of sucrose, arginine hydrochloride and arginine glutamate. In low ionic strength buffer, the addition of salts reduces the antibody colloidal and thermal stability, attributed to screening of electrostatic interactions. The presence of glutamate ion in the arginine salt partially reduces the damaging effect of ionic strength increase. The addition of 280 mM sucrose shifts the thermal protein unfolding to a higher temperature. Arginine salts in the used concentration reduce the relative monomer yield after refolding from urea, while sucrose has a favorable effect on antibody refolding. In addition, we show 12-month long-term stability data and observe correlations between thermal protein stability, relative monomer yield after refolding and monomer loss during storage. The monomer loss during storage is related to protein aggregation and formation of subvisible particles in some of the formulations. This study shows that the effect of commonly used additives on the long-term antibody physical stability can be predicted using orthogonal biophysical measurements

    Competitive and Cooperative Interactions Mediate RNA Transfer from Herpesvirus Saimiri ORF57 to the Mammalian Export Adaptor ALYREF

    Get PDF
    The essential herpesvirus adaptor protein HVS ORF57, which has homologs in all other herpesviruses, promotes viral mRNA export by utilizing the cellular mRNA export machinery. ORF57 protein specifically recognizes viral mRNA transcripts, and binds to proteins of the cellular transcription-export (TREX) complex, in particular ALYREF. This interaction introduces viral mRNA to the NXF1 pathway, subsequently directing it to the nuclear pore for export to the cytoplasm. Here we have used a range of techniques to reveal the sites for direct contact between RNA and ORF57 in the absence and presence of ALYREF. A binding site within ORF57 was characterized which recognizes specific viral mRNA motifs. When ALYREF is present, part of this ORF57 RNA binding site, composed of an a-helix, binds preferentially to ALYREF. This competitively displaces viral RNA from the a-helix, but contact with RNA is still maintained by a flanking region. At the same time, the flexible N-terminal domain of ALYREF comes into contact with the viral RNA, which becomes engaged in an extensive network of synergistic interactions with both ALYREF and ORF57. Transfer of RNA to ALYREF in the ternary complex, and involvement of individual ORF57 residues in RNA recognition, were confirmed by UV cross-linking and mutagenesis. The atomic-resolution structure of the ORF57-ALYREF interface was determined, which noticeably differed from the homologous ICP27-ALYREF structure. Together, the data provides the first site-specific description of how viral mRNA is locked by a herpes viral adaptor protein in complex with cellular ALYREF, giving herpesvirus access to the cellular mRNA export machinery. The NMR strategy used may be more generally applicable to the study of fuzzy protein-protein-RNA complexes which involve flexible polypeptide regions

    Lipopolysaccharide Structure and the Phenomenon of Low Endotoxin Recovery

    No full text
    Lipopolysaccharide (LPS) is a cell-wall component of Gram-negative bacteria which contributes to bacterial toxicity. During processes such as cell division, shedding of outer membrane vesicles, or bacterial cell death, LPS is released into the surrounding media. If such contamination got into the bloodstream, it would induce pro-inflammatory immune responses which can result in sepsis and death. Therefore, detection of LPS is essential in the pharmaceutical and food industries to prevent patients being exposed to LPS. The Limulus Amebocyte Lysate (LAL) assay is the current major assay used by industry to detect and quantify LPS contamination. However, in recent years the phenomenon of Low Endotoxin Recovery (LER) has gained significant scientific attention. The phenomenon describes the inability of LAL assays, in some cases, to detect LPS due to a masking effect caused by interaction with formulation excipients. Although the mechanism of LER has not been fully determined, it is widely thought that the origin of the effect is associated with these interactions perturbing the supramolecular formation of LPS aggregates. Whilst the phenomenon of LER is highly complex and remains to be entirely understood, herein we aim to provide a state-of-the-art review of the ongoing and, at times, controversial topics of LER research. We overview the current understanding of the relationship between LPS structure and toxicity, conditions in which the supramolecular arrangement of LPS can be altered, the hypothesised mechanisms of LER, and discuss the possible risk of masked LPS remaining biologically toxic upon administration to patients
    • …
    corecore