112 research outputs found

    Sprint start kinetics of amputee and non-amputee sprinters

    Get PDF
    The purpose of this study was to explore the relationship between the forces applied to the starting blocks and the start performances (SPs) of amputee sprinters (ASs) and non-amputee sprinters (NASs). SPs of 154 male and female NASs (100-m personal records [PRs], 9.58–14.00 s) and 7 male ASs (3 unilateral above knee, 3 unilateral below knee, 1 bilateral below knee; 100 m PRs, 11.70–12.70 s) with running specific prostheses (RSPs) were analysed during full-effort sprint starts using instrumented starting blocks that measured the applied forces in 3D. Using the NAS dataset and a combination of factor analysis and multiple regression techniques, we explored the relationship between force characteristics and SP (quantified by normalized average horizontal block power). Start kinetics were subsequently compared between ASs and NASs who were matched based on their absolute 100 m PR and their 100 m PR relative to the world record in their starting class. In NASs, 86% of the variance in SP was shared with five latent factors on which measured parameters related to force application to the rear and front blocks and the respective push-off directions in the sagittal plane of motion were loaded. Mediolateral force application had little influence on SP. The SP of ASs was significantly reduced compared to that of NASs matched on the basis of relative 100-m PR (−33.8%; d = 2.11, p < 0.001), while a non-significant performance reduction was observed when absolute 100-m PRs were used (−17.7%; d = 0.79, p = 0.09). These results are at least partially explained by the fact that force application to the rear block was clearly impaired in the affected legs of ASs

    Effective Gene Therapy in a Mouse Model of Prion Diseases

    Get PDF
    Classical drug therapies against prion diseases have encountered serious difficulties. It has become urgent to develop radically different therapeutic strategies. Previously, we showed that VSV-G pseudotyped FIV derived vectors carrying dominant negative mutants of the PrP gene are efficient to inhibit prion replication in chronically prion-infected cells. Besides, they can transduce neurons and cells of the lymphoreticular system, highlighting their potential use in gene therapy approaches. Here, we used lentiviral gene transfer to deliver PrPQ167R virions possessing anti-prion properties to analyse their efficiency in vivo. Since treatment for prion diseases is initiated belatedly in human patients, we focused on the development of a curative therapeutic protocol targeting the late stage of the disease, either at 35 or 105 days post-infection (d.p.i.) with prions. We observed a prolongation in the lifespan of the treated mice that prompted us to develop a system of cannula implantation into the brain of prion-infected mice. Chronic injections of PrPQ167R virions were done at 80 and 95 d.p.i. After only two injections, survival of the treated mice was extended by 30 days (20%), accompanied by substantial improvement in behaviour. This delay was correlated with: (i) a strong reduction of spongiosis in the ipsilateral side of the brain by comparison with the contralateral side; and (ii) a remarkable decrease in astrocytic gliosis in the whole brain. These results suggest that chronic injections of dominant negative lentiviral vectors into the brain, may be a promising approach for a curative treatment of prion diseases

    Trans-Dominant Inhibition of Prion Propagation In Vitro Is Not Mediated by an Accessory Cofactor

    Get PDF
    Previous studies identified prion protein (PrP) mutants which act as dominant negative inhibitors of prion formation through a mechanism hypothesized to require an unidentified species-specific cofactor termed protein X. To study the mechanism of dominant negative inhibition in vitro, we used recombinant PrPC molecules expressed in Chinese hamster ovary cells as substrates in serial protein misfolding cyclic amplification (sPMCA) reactions. Bioassays confirmed that the products of these reactions are infectious. Using this system, we find that: (1) trans-dominant inhibition can be dissociated from conversion activity, (2) dominant-negative inhibition of prion formation can be reconstituted in vitro using only purified substrates, even when wild type (WT) PrPC is pre-incubated with poly(A) RNA and PrPSc template, and (3) Q172R is the only hamster PrP mutant tested that fails to convert into PrPSc and that can dominantly inhibit conversion of WT PrP at sub-stoichiometric levels. These results refute the hypothesis that protein X is required to mediate dominant inhibition of prion propagation, and suggest that PrP molecules compete for binding to a nascent seeding site on newly formed PrPSc molecules, most likely through an epitope containing residue 172

    Four types of scrapie in goats differentiated from each other and bovine spongiform encephalopathy by biochemical methods

    Get PDF
    Scrapie in goats has been known since 1942, the archetype of prion diseases in which only prion protein (PrP) in misfolded state (PrPSc) acts as infectious agent with fatal consequence. Emergence of bovine spongiform encephalopathy (BSE) with its zoonotic behaviour and detection in goats enhanced fears that its source was located in small ruminants. However, in goats knowledge on prion strain typing is limited. A European-wide study is presented concerning the biochemical phenotypes of the protease resistant fraction of PrPSc (PrPres) in over thirty brain isolates from transmissible spongiform encephalopathy (TSE) affected goats collected in seven countries. Three different scrapie forms were found: classical scrapie (CS), Nor98/atypical scrapie and one case of CH1641 scrapie. In addition, CS was found in two variants—CS-1 and CS-2 (mainly Italy)—which differed in proteolytic resistance of the PrPres N-terminus. Suitable PrPres markers for discriminating CH1641 from BSE (C-type) appeared to be glycoprofile pattern, presence of two triplets instead of one, and structural (in)stability of its core amino acid region. None of the samples exhibited BSE like features. BSE and these four scrapie types, of which CS-2 is new, can be recognized in goats with combinations of a set of nine biochemical parameters

    The macrophage in HIV-1 infection: From activation to deactivation?

    Get PDF
    Macrophages play a crucial role in innate and adaptative immunity in response to microorganisms and are an important cellular target during HIV-1 infection. Recently, the heterogeneity of the macrophage population has been highlighted. Classically activated or type 1 macrophages (M1) induced in particular by IFN-Îł display a pro-inflammatory profile. The alternatively activated or type 2 macrophages (M2) induced by Th-2 cytokines, such as IL-4 and IL-13 express anti-inflammatory and tissue repair properties. Finally IL-10 has been described as the prototypic cytokine involved in the deactivation of macrophages (dM). Since the capacity of macrophages to support productive HIV-1 infection is known to be modulated by cytokines, this review shows how modulation of macrophage activation by cytokines impacts the capacity to support productive HIV-1 infection. Based on the activation status of macrophages we propose a model starting with M1 classically activated macrophages with accelerated formation of viral reservoirs in a context of Th1 and proinflammatory cytokines. Then IL-4/IL-13 alternatively activated M2 macrophages will enter into the game that will stop the expansion of the HIV-1 reservoir. Finally IL-10 deactivation of macrophages will lead to immune failure observed at the very late stages of the HIV-1 disease

    Computational Methods Used in Hit-to-Lead and Lead Optimization Stages of Structure-Based Drug Discovery

    Get PDF
    GPCR modeling approaches are widely used in the hit-to-lead (H2L) and lead optimization (LO) stages of drug discovery. The aims of these modeling approaches are to predict the 3D structures of the receptor-ligand complexes, to explore the key interactions between the receptor and the ligand and to utilize these insights in the design of new molecules with improved binding, selectivity or other pharmacological properties. In this book chapter, we present a brief survey of key computational approaches integrated with hierarchical GPCR modeling protocol (HGMP) used in hit-to-lead (H2L) and in lead optimization (LO) stages of structure-based drug discovery (SBDD). We outline the differences in modeling strategies used in H2L and LO of SBDD and illustrate how these tools have been applied in three drug discovery projects

    Search for doubly charged Higgs boson pair production in the decay to mu(+)mu(+)mu(-)mu(-) in p(p)over-bar collisions at root s=1.96 TeV

    Get PDF
    A search for pair production of doubly charged Higgs bosons in the process p (p) over bar -->H++H---->mu(+)mu(+)mu(-)mu(-) is performed with the D0 run II detector at the Fermilab Tevatron. The analysis is based on a sample of inclusive dimuon data collected at an energy of roots=1.96 TeV, corresponding to an integrated luminosity of 113 pb(-1). In the absence of a signal, 95% confidence level mass limits of M(H-L(+/-+/-))>118.4 GeV/c(2) and M(H-R(+/-+/-))>98.2 GeV/c(2) are set for left-handed and right-handed doubly charged Higgs bosons, respectively, assuming 100% branching into muon pairs
    • 

    corecore