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Summary 

 

GPCR modeling approaches are widely used in the hit-to-lead (H2L) and lead 

optimization (LO) stages of drug discovery. The aims of these modeling approaches 

are to predict the 3D structures of the receptor-ligand complexes, to explore the key 

interactions between receptor and ligand and to utilize these insights in the design of 

new molecules with improved binding, selectivity or other pharmacological properties. 

In this book chapter, we present a brief survey of key computational approaches 

integrated with hierarchical GPCR modeling protocol (HGMP) used in hit-to-lead (H2L) 

and in lead optimization (LO) stages of structure based drug discovery (SBDD). We 

outline the differences in modeling strategies used in H2L and LO of SBDD. We 

illustrate how these tools have been applied in three drug discovery projects.  

 

1. Introduction 

 

1.1 GPCRs are cell surface receptors that contain seven transmembrane helices and 

constitute the largest superfamily of membrane proteins, regulating almost every 

aspect of cellular activity [1]. GPCRs have enormous physiological and biomedical 

importance, being the primary site of action of 40% of all prescribed drugs today [2]. 

There are over 800 human GPCRs known today [3, 4], involved in a diversity of 

diseases, including cancer, pain, inflammation, depression, anxiety [5]. Despite this, 

drugs have been developed just for 50 of these GPCRs. This renders GPCRs as one 

of the most important classes of current pharmacological targets [3, 5]. 

 

1.2 Recent advances in X-ray crystallography of GPCR experiencing its ‘renaissance’ [2, 

6-10], however, crystal structures are still not currently feasible for every receptor or 

receptor-ligand complex [11]. This significantly limits the ability of the crystallography 

to guide SBDD for GPCR targets in “real-time” [11]. Furthermore, experimentally 
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determined structures represent just a few snapshots of what we know are very 

dynamic receptors and as a consequence offer only limited insights into the overall 

conformational space and related function of GPCR [11]. 

 

1.3 In the absence of crystallographic data, GPCR modeling is often the only practical 

alternative to guide SBDD [1, 12-14]. Modern computational approaches can address 

such key issues such as GPCR flexibility [15] and ligand-induced dynamics, ligand 

kinetics (kon/koff rates) [16-19], prediction of water positions [20] and their role in ligand 

binding and prediction of the effects of mutations on ligand binding. However, the 

ultimate goals of any GPCR modeling protocol are: 1) to predict the structures of the 

complexes between ligands and the target receptor, 2) to explore the key interactions 

between the ligand, surrounding residues and water molecules and 3) to utilize these 

insights in the design of the next generation of the lead compounds with improved 

binding, selectivity or other pharmacological properties. The success of any GPCR 

modeling protocol applied in SBDD is always measured by decreased time and cost 

of the synthetic effort [14, 21]. 

 

1.4 Hit to lead (H2L) [22] is defined as early stage of drug discovery also known as lead 

generation (Figure 1A). In H2L small molecule hits from a high throughput screen 

(HTS) or from virtual screening (VS) are evaluated and undergo limited optimization 

to identify promising lead compounds as illustrated in Figure 1A. Through the limited 

H2L optimization steps, the affinities of these primary hits are often improved by 

several orders of magnitude to the nanomolar (10−9 M) range [22]. To achieve 

improvement in affinity it is usually sufficient to modify the hit in such way that it will 

generate additional interaction/s with the target receptor compare to the primary hit.  

 

<Figure 1A, here> 
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1.5 Lead optimization (LO) [21] phase of drug discovery (Figure 1B) is usually defined 

as the process of bringing a chemical series to clinical trials through iterative steps of 

design and testing. Compared to H2L, the initial lead compound(s) in LO often 

already demonstrated significant potency against the target. However, the affinity, 

selectivity or other pharmacological properties might need further optimization. The 

key challenge in LO is to improve of what are often already potent compounds. This 

requires detailed information on the interactions between the ligand and its 

corresponding target and off-target receptors. Any modeling input must therefore be 

accurate and give reliable insights at the molecular level. 

 

<Figure 1B, here> 

 

1.6 Integrating of GPCR homology modelling with other modelling approaches such as 

docking and fragment molecular orbitals (FMO) can be powerful tool to guide SBDD 

[21, 23], as it provides an accurate and comprehensive list of strong, weak, or 

repulsive interactions between the ligand and its surrounding residues. Such 

information is highly useful in rational design of the next generation of lead 

compounds in terms of modifications, scaffold replacement (scaffold hoping), linking 

(specifically in case of fragment-based drug discovery) or extension of chemical 

moieties to form stronger or new interactions with the protein or alternatively to 

remove repulsions. It can also be helpful in analysis of the ligand-water-protein 

network, to distinguish between energetically favorable and unfavorable water 

molecules and to design ligands that can interact or displace certain waters. FMO 

energy terms can be efficiently used as descriptors in QSAR modelling to predict the 

binding affinities of new molecules [24].   
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1.7 In this book chapter, we will describe one of many GPCR modelling protocols named 

‘hierarchical GPCR modelling protocol (HGMP [21, 25, 26], Figure 2). HGMP has 

been developed by Evotec Ltd and University of Oxford to support SBDD programs. 

HGMP generates a 3D model of GPCR structures and its complexes with small 

molecules by applying computational methods. In ‘Methods’ section we will describe 

how HGMP is integrated with other SBDD tools like: docking, molecular dynamic 

simulations, FMO, water molecules predictors and KNIME. In ‘Notes’ section we will 

illustrate how these tools were use in 3 H2L and LO projects. 

 

2. METHODS  

 

2.1 Constructing GPCR models 

 

2.1.1 Traditional GPCR homology modeling approaches [13] often involve the 

following steps: (1) sequence alignment between the modeled receptor and an 

appropriate template, (2) homology modeling and model refinement and (3) 

docking of ligands into the binding site. The key cons of such ‘static’ 

approaches is that the modeled receptor is practically a ‘copy’ of the original 

template and therefore some of the critical structural features are often lost. 

This significantly reduces the relevance of such models and their ability to 

guide SBDD. This is particularly problematic in the LO when information on the 

fine details of the system is highly important.  

 

2.1.2 Modern (dynamic) GPCR modeling protocols [13, 27] have moved beyond 

the use of static homology modeling approaches by performing the type of 

extensive refinement and exploration of both structure and flexibility that is 

required to drive SBDD. To address the various challenges of GPCR drug 

discovery programs, these contemporary approaches are encapsulated as 
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toolkits that can be flexibly assembled into workflows tailored to the specific 

needs of each project. The ability to incorporate experimental data during the 

modeling is another important factor that can enhance the effectiveness of 

these workflows.  An example of such a workflow is the hierarchical GPCR 

modeling protocol (HGMP - Figure 2). 

 

<Figure 2, here> 

 

2.1.3 Hierarchical GPCR modeling protocol (HGMP) [25] (Figure 2) - generates a 

GPCR model and its potential complexes with small molecules by applying a 

series of computational methods incorporated mainly in molecular operating 

system (MOE, Chemical Computing Group, version 2016.08). The protocol 

makes use of homology modeling followed by MD simulations and docking 

(flexible docking if required) to predict binding poses and functions of ligands. 

The HGMP is practically a toolbox for GPCR modeling that can be ‘tailored’ for 

project needs where experimental data can be easily fed in. It is equipped with 

GPCR-specific “plugins”, including a GPCR-likeness assessment score 

(GLAS) to evaluate model quality and a pairwise protein comparison method 

(ProS) used to cluster structural data and distinguish between different 

activation substates. The HGMP has been applied in a number of industrial 

drug design projects, which have also led to further refinements of the protocol 

(see Notes 3.1, 3.2 and 3.3). Even in cases where the sequence identity to the 

target is very low, careful model building in conjunction with site-directed 

mutagenesis and binding assays can be very useful in aiding the future 

direction of a drug discovery program or indeed rationalizing 

 

2.2 Generating of the GPCR-ligand complex 
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2.2.1 Having the model of the receptor in hand, the next step is often predicting of 

the receptor-ligand complex, this process is called molecular docking. 

Predicting this complex is highly important if we want to study the interactions 

between the ligand and receptor and to guide the SBDD. As numerous docking 

approaches have been reviewed in the literature [28] quite recently we here 

survey briefly the unique challenges and docking protocols relevant to GPCRs.  

 

2.2.2 Docking protocols [28, 29] are the molecular modelling processes aimed to 

explore the interaction between ligand and protein. The ultimate goal of any 

docking protocol is to predict the bioactive conformation of the ligand and its 

place and orientation inside of the receptor binding site named as ‘docking 

pose’ or ‘binding mode’.  The docking procedure consists of two sequential 

tasks. Firstly, flexible placement of the ligand in a pre-defined binding site of 

the receptor and then scoring the poses of the docked ligands. Both posing and 

scoring phases are equally important and can be carried out by very different 

methodologies depending on how exhaustive the conformational sampling of 

both ligand and protein are considered.  

 
 

2.2.3 Some commercial available docking suites of programs are AutoDock [30], 

AutoDock Vina [31], MOE  [21], FlexX [32], GOLD [33] and Glide [34]. Different 

search algorithms are designed to predict the bioactive conformation of the 

studied compounds through the evaluation of the interactions between ligands 

and targets [29]. An increase in the quality of the ligand docking can be gained 

by consideration of flexibility of the modelled system.  

 

2.2.4 Scoring and re-ranking: In many of our projects (see Note 3.4), we used 

AMBER interaction energy to rescore and re-rank docking poses. We used the 

MM_PBSA/GBSA approach [35] to calculate the AMBER interaction energy.    
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[36] This approach, while subject to the same limitations of all force field based 

methods, was able to accurately predict relative binding affinities between 

ligand and protein and was therefore selected as a reliable method to rescore 

and to rank docking poses [37]. 

 

 
2.2.5 Flexible docking - typical docking protocols keep the receptor (largely) rigid, 

and so cannot address the issue of receptor flexibility. As these protocols do 

not take into account the ligand-induced (or ligand-stabilized) conformation of 

the receptor, it makes it harder to rationalize the effects of ligand binding in 

terms of activation or deactivation (agonists and antagonists, respectively). 

Some docking approaches like induced fit docking (IFD) introduced in 

Autodock 4 [38], AutoDock Vina and Schrödinger assign limited flexibility to the 

sidechains of key residues. However, this approach is slightly artificial and is 

an unsatisfactory solution to the general problem of receptor flexibility. The 

ensemble docking protocol, implemented in GOLD [33], performs docking into 

multiple states of the same receptor but it is highly governed by the availability 

of the structural information on the targeted receptor. The perfect scenario 

would be if the bioactive conformation of the docked ligand was known prior to 

the docking simulation.  

<Figure 3, here> 

 

2.2.6 HGMP-C4XD integrates HGMP with experimental NMR based technology 

(C4XD) (Figure 3).  The C4XD [39] was developed by C4X Discovery Ltd to 

explore how molecules behave in physiologically relevant solution. C4XD 

demonstrated that small molecules exist in relatively few conformations in 

solution and that one of those conformations closely resembles the bioactive 

form – but which one? Next, during the docking we limit the ligand conformation 
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space only to the most populated conformations found by C4XD and assign 

the flexibility to the receptor. The combination of HGMP and the C4XD 

approaches allows the isolation of the bioactive conformation of the ligand and 

the identification of the key pharmacophoric features required for GPCR-ligand 

binding and selectivity. These structural insights are essential for the 

refinement of GPCR models, for addressing the ligand induced receptor 

flexibility and for the rationalization of the ligand binding.  

 

 
2.2.7 An additional way to place the ligand inside of the receptor is to overlay it on 

top of an already bound ligand (template) usually extracted from the crystal 

structure. The most common software to perform molecular overlays is ROCS, 

from OpenEye [40]. An additional minimization of the ligand within the active 

site is needed after in order to remove clashes with the receptor. 

 

 

2.2.8 ROCS protocol [40] is the most common shape-based superposition method 

employed in industry nowadays. ROCS performs shape-based overlays of 

conformers of candidate molecules to a query molecule (template) in one or 

more conformations. The overlays can be performed very quickly because the 

molecules can be described as atom-centered Gaussian functions. ROCS 

maximizes the rigid overlap of these Gaussian functions and thereby 

maximizes the shared volume between a template and a single conformation 

of a database molecule. ROCS is therefore used in ligand-based drug design 

in the absence of the target structure. Despite its simplicity it has shown a 

similar performance and consistency to other structure-based approaches in 

virtual screening. Moreover, ROCS has also been incorporated into docking 

workflows where the obtained ROCS overlay is used as initial placement/pose 
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within the active site and has also been embedded in alignment-dependent 3D 

QSAR analyses.  

 

2.3 Exploration of the dynamic nature of GPCRs 

 

2.3.1 GPCRs are, by functional necessity, very dynamic entities. Molecular dynamic 

(MD) simulation therefore provides an important source of structural and 

functional information for these receptors (as described in detail in chapter 6 of 

this book) [15]. MD can be used in a variety of ways including refinement of the 

homology model in a more realistic membrane environment, exploration of 

ligand-induced flexibility and function, the analysis of solvent, the effect of 

mutation on receptor stability and exploration of ligand binding and dissociation 

kinetics [41, 42]. MD trajectories are often used to generate an ensemble of 

possible receptor substates. The ProS and GLAS methods outlined in 2.1.3 

were developed to explore the structural data generated within MD simulations 

and to help distinguish between different GPCR substates. 

 

2.3.2 MD simulations also allow one to explore the possibility of allosteric and cryptic 

binding pockets. Cryptic binding pockets are not exposed to bulk solvent all of 

the time and so may be hidden in certain crystallographic structures. MD allows 

these sites to manifest themselves, enabling docking and similar protocols to 

be followed in the usual manner. Simulations are as well essential for the 

understanding of allosteric modulation [43, 44]. In some cases, however, full 

MD simulation may not be required, for example when just local refinement of 

a homology model is required. In these cases “low-mode” molecular dynamics  

(LowModeMD) simulation can provide a more rapid solution [45].  

LowModeMD, as implement in MOE (Chemical Computing Group), is based 

on perturbing an existing conformation along a trajectory using initial atomic 
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velocities with kinetic energy concentrated on the low-frequency vibrational 

modes, followed by energy minimization. 

 

2.3.3 Residence time and MD - It has been recently demonstrated that GPCR 

modeling and MD simulation can be a promising tool for the exploration and 

structural rationalization of ligand-receptor residence time (RT) [15, 16, 18, 46, 

47]. The definition of the RT is the length of time for which a small molecule 

stays bound to its receptor target [48]. The current challenge is the timescale: 

the millisecond timescales of conventional MD are incompatible with the typical 

RTs of drugs (up to hours) [15, 46]. To overcome this encounter new 

approaches to extend MD timescales have been developed. These include: (1) 

Markov State Models (MSM) - a very powerful method to describe dynamical 

processes between defined states in MD simulations [14] (2) Metadynamics-

based approaches that employ MSM to calculate off-rates based on the 

transitions between the intermediate (calculated) and predefined end states, 

and (3) Scaled MD - another approximate approach to rank ligands by their off-

rates [46, 47].  

  

2.4 Exploring receptor-ligand interactions 

 

2.4.1 The understanding of binding interactions between a protein and a small 

molecule plays a key role in the rationalization of potency, selectivity and 

kinetics. However, even with the crystal structure in hand, visual inspection and 

force-field based molecular mechanics calculations cannot always explain the 

full complexity of the molecular interactions that are so critical in LO. Quantum 

mechanical methods have the potential to address this shortcoming, but the 

high computational cost has typically made the use of these calculations 

impractical.  
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2.4.2 Fragment Molecular Orbital (FMO) method [24] (Figure 4A) is widely used 

by us for protein-ligand binding calculations and drug design because it offers 

substantial computational savings over traditional QM methods [24, 49]. By 

dividing the system, both ligand and receptor, into smaller pieces and 

performing QM calculations on these fragments, one can achieve high 

efficiency. A typical FMO calculation on a GPCR-ligand complex takes 

approximately 4h on 36 CPU cores to complete, which is significantly faster 

than the equivalent classical QM calculations. Recently, we have demonstrated 

that FMO can be even faster (secs instead of hours) without compromising the 

accuracy by combining it with density-functional tight-binding (DFTB) method 

[50].  

 

<Figure 4A and 4B, here> 

 

2.4.3 Using FMO, one can take any protein-ligand complex and calculate a list of 

interactions and their chemical natures. Many of these interactions are difficult 

to detect or quantify with non-QM methods [49]. This information is very useful 

in guiding rational LO in terms of ligand modifications such as scaffold 

replacement and linking or the extension of chemical moieties to form stronger 

or new interactions with the protein [51].  

 

2.5 Predicting role of water molecules in receptor-ligand binding 

 

2.5.1 It is known that water-mediated interactions between ligands and receptor are 

extremely common and highly significant for binding and kinetics [17, 44]. Yet 

only high-resolution crystal structures are able to give any reliable indication as 

to the presence of water molecules. Displacement of these key water 
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molecules can directly affect the ligand binding affinity and it is in the scope of 

SBDD programs to design compounds that can interact with or efficiently 

displace these water molecules. The prediction of water molecule networks and 

their perturbation is also critical in terms of its relationship to kinetics and 

residence time (see chapter 9 of this book), as has been demonstrated for a 

series of adenosine A2A receptor antagonists [17]. 

 

2.5.2 Several methods (WaterMap [52], WaterFLAP [20], WaterDock [53],  AutoDock 

Vina and 3D-RISM [54]) enable a relatively rapid prediction of water molecule 

sites and estimation of the energy penalty for water displacement. They can 

help medicinal chemists to decide whether to interact with or displace a certain 

water molecule, if a particular sub-pocket of the receptor can be explored by 

hydrophobic moieties or if a displaced water has to be substituted by a group 

that mimics the hydrogen bond network. These methods are suitable for both 

H2L and LO.  

 

2.5.3 Most of these methods are based on MD or Monte Carlo (MC) simulations and 

observing the peaks in water density can provide the location of water binding 

sites [55, 56].  However, these calculations can be time-consuming to run, 

especially with buried cavities, due to the long time it takes for water to 

permeate within the protein.  Grand canonical MC methods [57] can 

significantly reduce the length of the simulation.  This has led to a number of 

attempts to develop faster methods.  JAWS for example is a grid-based MC 

method that estimates the free energy of displacing a water molecule into bulk.  

An integral theory approach (3D-RISM [54]) has also reported success in 

predicting solvation structure within ligand-binding sites and protein cavities.  

Short molecular simulations can be used as the data for inhomogeneous fluid 

solvation theory (IFST).  This method has the distinct advantage that the free 
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energy can be broken down into enthalpic and entropic components.  IFST also 

forms the framework for WaterMap [52].   

 
 

2.6 Combining individual tools into integrated workflow engines  

 

2.6.1 GPCR modeling and SBDD is a multitask process comprised of sequential 

steps (Figure 5). There is a desire to automate and standardize this process 

and make it more user-friendly so that less experience users can also work 

with it.   

 

2.6.2 Pipeline-Pilot and KNIME [58, 59] are the most commonly used software 

packages (commercial and open source, respectively) that automate the 

modeling process and enable an easy concatenation of the individual tools 

(nodes) into an integrated workflow. Given the extensive interest in creating 

new therapeutics based on novel GPCR targets, modeling methodologies that 

are as streamlined, rapid, precise and accurate as possible are highly desirable 

and it is expected that an increasing number of workflows will become available 

in future. 

 

< Figure 5 here> 

 

3. Notes 

 

3.1 In the absence of the structural information of the receptor target, the design of new 

compounds in a medicinal chemistry programs typically relies purely on SAR data. 

However, interpreting such data in isolation from specific knowledge of the protein 

can be challenging and even misleading [14]. Therefore, any additional means that 
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can build confidence in the SAR interpretation and generate novel structure-based 

hypotheses is potentially very useful. As a result, GPCR modeling is used to bridge 

the gap and facilitate SBDD. The introduction of experimental data like SAR into a 

modelling process allows a refinement of the GPCR models to a degree that is not 

possible with homology modelling alone and provides a deeper rationalization of 

ligand binding and selectivity. In this way, modelling methods should be designed to 

accommodate experimental data in their algorithms and be flexible enough to deal 

with the wide variety of challenges that drug discovery programs face.      

 

3.2 HGMP can take advantage of the experimental data that can be fed into the modeling 

process to add extra accuracy and confidence in the modeling outcomes. The use of 

the HGMP in ‘real’ drug discovery projects is demonstrated below.  

 

 
3.3 Fighting obesity with a sugar-based library [60] - Obesity is an increasingly 

common condition. Antagonism of the melanin-concentrating hormone-1 receptor 

(MCH-1R) has been widely reported as a promising therapeutic avenue for obesity 

treatment. However, discovery and optimization of new compounds targeting MCH-

1R has been hindered by a lack of structural information about the MCH-1R and low 

high throughput screening (HTS) success rates. In this H2L project, we combined 

HGMP (see Methods 2.1.3) with the screening of a diverse library of sugar-based 

compounds from the VAST technology (Versatile Assembly on Stable Templates 

[60]). The GPCR-VAST method provides a good example of how ligand SAR data, 

when combined with modeling, can provide a useful source of structural information 

on GPCR binding sites and for SBDD. 

 

<Figure 6 here> 
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3.3.1 The 490 VAST compounds obtained from this library were screened against 

MCH-1R, resulting in the discovery of a moderately potent MCH-1R antagonist, 

ACL21823 (IC50 = 306 nM, see Figure 6). The discovery of ACL21823 was 

utilized in the construction of a MCH-1R model and in the refinement of its 

binding site. We used HGMP (see Methods 2.1.3) to model the MCH-1R and 

the flexible docking protocol of GOLD (see Methods 2.2.5) to dock the VAST 

hits into MCH-1R receptor model.  The scoring and re-ranking was performed 

with AMBER interaction energy (see Methods 2.2.4). The usefulness of this 

method in H2L was demonstrated by a structure-based VS, which achieved a 

hit rate of 14% and yielded 10 new chemotypes of MCH-1R antagonists 

including EOAI3367472 (IC50 = 131 nM) and EOAI3367474 (IC50 = 213 nM). 

 

3.4 Discovery of selective 5-HT2C agonists for the treatment of metabolic disorders 

[61] - In this LO project, which was performed prior to the publication of the 5-HT2B 

and 5-HT1B crystal structures, the challenge was to optimize 5-HT2c binders and 

convert them into strong agonists that were unable to activate 5-HT2A and 5-HT2B 

receptors. It is known that for effective antagonism, it is sufficient for ligands just to 

occupy a relevant receptor site in order to inhibit the binding of endogenous ligands.  

However, agonist discovery has the additional complication and requirement that the 

ligand must not only be able to both occupy the receptor site but also be able to 

activate the receptor.  Agonist binding should elicit conformational changes in the 

receptor that result in activation of intracellular G-proteins and/or -arrestins which, 

in turn, can modulate the activity of downstream effectors within the cell.  The 

mechanism and structural changes associated with the activation of GPCRs remains 

unclear, making agonist design quite challenging.   

 

3.4.1 To explore 5-HT2C activation mechanism and to design compounds that would 

promote receptor activation, HGMP was applied (see Methods 2.1.3) to model 
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both the active and inactive receptor conformations, referred to as 5-HT2C
active 

and 5-HT2C
inactive, respectively. Ensemble docking with GOLD (see Methods 

2.2.5) was used to predict the binding modes of lead compounds in 5-HT2A, 5-

HT2B and 5-HT2C. It was proposed that agonists enter deeply into 5-HT2C 

binding site and interact simultaneously with both TM3 and TM6, thus 

increasing the overall stability of 5-HT2C
active and promoting activation. In 

parallel, we modeled off-targets 5-HT2A and 5-HT2B to filter out compounds from 

the 5-HT2C
active screen that might also bind to these two receptors. We also 

employed our hERG modeling [62] to take into account the hERG liability of 

our lead compounds. The final outcome was the discovery of a novel 

compound 10 (EC50 = 8.4 / 762 / 73 nM for 5-HT2C / 2A / 2B and hERG inhibition 

of 11% at 10M) [61].  

 

3.5 Case study 3: Discovery of potent & selective OX2 receptor antagonists [63] - 

The orexin receptors (OX1 and OX2) are linked to a range of different physiological 

functions including the control of feeding, energy metabolism, modulation of neuro-

endocrine function and regulation of the sleep-wake cycle. The key challenges of this 

project were to increase the OX2 activity and selectivity of lead compounds over OX1. 

This was particularly difficult as OX1 and OX2 receptors share over 80% sequence 

identity at the amino acid level. This project was completed before the crystal 

structures of OX1 and OX2 were released.  

 

3.5.1 HGMP was applied (see Methods 2.1.3) to model both OX1 and OX2 receptors. 

We used MD simulation (see Methods 2.3.1) as implemented in GROMACS 

[21, 64] to explore OX1/ OX2 selectivity. MD suggested that differences in intra-

helical interactions resulted in differences in TM conformation and in the 

topology of the binding pocket. The differences identified were small but 

sufficient to design molecules with OX2 selectivity. This rational design 
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significantly decreased the amount of synthesis required by focusing effort on 

the relevant portion of the ligand structure, as outlined in Figure 7. The final 

compound, EP-009-0513, had Ki values of 4,363 and 5.7 nM for OX1 and OX2, 

respectively. 

 

<Figure 7 here> 

 

3.6 Conclusion - Modern GPCR modeling protocols [65], such as the HGMP, have gone 

beyond the use of static models to allow for the type of detailed exploration of GPCR-

ligand structures required to drive H2L and LO. These methods permit the prediction 

of GPCR substates in a way that is not possible with static homology modeling alone. 

The practicality and efficiency of GPCR modeling integrated with other modeling tools 

is enhanced by experimental data and by the availability of structural information on 

the targeted GPCR, satisfying the immediate need of the drug discovery process for 

the information needed to drive SBDD effectively. 

 

 
3.7 Future challenges - Despite a huge effort by the pharmaceutical industry to design 

novel drugs for GPCR targets, there is tremendous attrition along R&D pipelines [48]. 

Many promising drug candidates eventually fail in clinical trials due to a demonstrated 

lack of efficacy. A retrospective analysis of those that have successfully made it to 

the market has revealed that their beneficial effects in patients may be attributed to 

their long drug-target residence times (RTs) - the length of time for which a drug 

(ligand) stays bound to its receptor target [48]. There is substantial evidence that 

~70% of long RT therapeutics displayed higher efficacy than comparable faster-

dissociating drugs, supporting a growing recognition that drug-target RT may be of 

even greater importance than affinity, therapeutically [66].  
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3.8 Recently several notable reviews [48, 66, 67] have emphasized the crucial role of RT 

optimisation in the early phases of drug discovery, suggesting that detailed structure-

based studies of RT should be introduced in the early phases of drug discovery to 

prevent “fail late, fail expensive” scenarios. Efforts to include RT in the drug 

development process have focused on the adoption of either experimental or 

computational approaches (see Methods 2.3.3). Although each approach is very 

promising they only provide half of the whole picture. Experimental methods can 

measure the RT but cannot rationalize why certain compounds have longer RTs than 

the others or suggest ways to modify the structure of the ligand to improve its RT 

profile. On the other hand, computational methods are only able to provide this 

essential information if robust experimental data are available. Combining 

experimental and computational tools, as described in chapter 15 of this book, is a 

highly encouraging step towards addressing the RT in early stages of H2L and LO.  

 

3.9 Experience has shown that significant progress in technology R&D and ‘know-how’ 

for GPCR SBDD can only be achieved when there are good interdisciplinary 

collaborations between experimental and theoretical groups [1]. 
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Figure legends 

 

Figure 1A. Optimisation cycle for H2L 
 
Figure 1B. Optimisation cycle for LO 
 
Figure 2: A summary schematic of the Hierarchical GPCR Modeling Protocol (HGMP) 
  
Figure 3. HGMP-C4XD workflow 
 
Figure 4. Schematic summary of the FMO approach: (a) Workflow for PIEDA 
calculations and details on each of the PIE terms that are computed (b) FMO analysis 
of human adenosine OX2 receptor in complex with Suvorexant (PDB ID 4S0V [47]). 
The carbon atoms of the ligand are shown in light orange and for the receptor are grey. 
Nitrogen atoms are shown in blue, oxygen in red and chlorine in light green. The 
fragmented bonds are marked as red discs. The left-hand bar plots describe the sorted 
PIE of the most significant residues, and the right-hand plots describe the pair 
interaction energy decomposition analysis (PIEDA) of these key interactions. PIE 
terms: electrostatics, dispersion, charge-transfer, and exchange-repulsion are color-
coded in yellow, blue, red, and green, respectively. The figure is adapted from our 
previous publication  
 
Figure 5: Example of KNIME workflow 
 
Figure 6: Summary schematic of the VAST-GPCR modeling workflow that led to the 
discovery of new MCH-1R antagonists  
 
Figure 7. Schematic summarizing how interaction maps derived from GPCR model for 
potent & selective OX2 receptor antagonist 
 
 
 


