7 research outputs found

    RAB27A promotes melanoma cell invasion and metastasis via regulation of pro-invasive exosomes

    Get PDF
    Despite recent advances in targeted and immune-based therapies, advanced stage melanoma remains a clinical challenge with a poor prognosis. Understanding the genes and cellular processes that drive progression and metastasis is critical for identifying new therapeutic strategies. Here, we found that the GTPase RAB27A was overexpressed in a subset of melanomas, which correlated with poor patient survival. Loss of RAB27A expression in melanoma cell lines inhibited 3D spheroid invasion and cell motility in vitro, and spontaneous metastasis in vivo. The reduced invasion phenotype was rescued by RAB27A-replete exosomes, but not RAB27A-knockdown exosomes, indicating that RAB27A is responsible for the generation of pro-invasive exosomes. Furthermore, while RAB27A loss did not alter the number of exosomes secreted, it did change exosome size and altered the composition and abundance of exosomal proteins, some of which are known to regulate cancer cell movement. Our data suggest that RAB27A promotes the biogenesis of a distinct pro-invasive exosome population. These findings support RAB27A as a key cancer regulator, as well as a potential prognostic marker and therapeutic target in melanoma

    Dialysis-associated peritonitis in children

    Get PDF
    Peritonitis remains a frequent complication of peritoneal dialysis in children and is the most common reason for technique failure. The microbiology is characterized by a predominance of Gram-positive organisms, with fungi responsible for less than 5% of episodes. Data collected by the International Pediatric Peritonitis Registry have revealed a worldwide variation in the bacterial etiology of peritonitis, as well as in the rate of culture-negative peritonitis. Risk factors for infection include young age, the absence of prophylactic antibiotics at catheter placement, spiking of dialysis bags, and the presence of a catheter exit-site or tunnel infection. Clinical symptoms at presentation are somewhat organism specific and can be objectively assessed with a Disease Severity Score. Whereas recommendations for empiric antibiotic therapy in children have been published by the International Society of Peritoneal Dialysis, epidemiologic data and antibiotic susceptibility data suggest that it may be desirable to take the patient- and center-specific history of microorganisms and their sensitivity patterns into account when prescribing initial therapy. The vast majority of patients are treated successfully and continue peritoneal dialysis, with the poorest outcome noted in patients with peritonitis secondary to Gram-negative organisms or fungi and in those with a relapsing infection

    Abrogation of RAB27A expression transiently affects melanoma cell proliferation

    No full text
    The role of the small GTPase RAB27A as an essential melanosome trafficking regulator in melanocytes is well‐accepted. A decade ago, RAB27A was identified as a tumor dependency gene that promotes melanoma cell proliferation. RAB27A has since been linked to another propeller of cancer progression: exosome secretion. We have recently demonstrated that RAB27A is overexpressed in a subset of melanomas. High RAB27A gene and protein expression correlates with poor prognosis in melanoma patients. Mechanistic investigations revealed that the generation of pro‐invasive exosomes was RAB27A‐dependent and, therefore, silencing RAB27A reduced melanoma cell invasion in vitro and in vivo . However, previous studies have implicated RAB27A to be involved in both proliferation and invasion of melanoma cells. Employing four human cell lines, stratified by RAB27A expression, and one RAB27A‐high mouse cell line, we demonstrate in this study that the effects of abrogating RAB27A expression on proliferation are only temporary, in contrast to our previously reported persistent effects on tumor invasion and metastasis. Therefore, we assist in the dissection of the short‐term effects of RAB27A knockdown on melanoma cell proliferation versus long‐term effects on melanoma invasion and metastasis. We believe that our findings provide novel insights into the effects of RAB27A blockade

    The iron chelator, deferasirox, as a novel strategy for cancer treatment:oral activity against human lung tumor xenografts and molecular mechanism of action

    No full text
    Deferasirox is an orally effective iron (Fe) chelator currently used for the treatment of iron-overload disease and has been implemented as an alternative to the gold standard chelator, desferrioxamine (DFO). Earlier studies demonstrated that DFO exhibits anticancer activity due to its ability to deplete cancer cells of iron. In this investigation, we examined the in vitro and in vivo activity of deferasirox against cells from human solid tumors. To date, there have been no studies to investigate the effect of deferasirox on these types of tumors in vivo. Deferasirox demonstrated similar activity at inhibiting proliferation of DMS-53 lung carcinoma and SK-N-MC neuroepithelioma cell lines compared with DFO. Furthermore, deferasirox was generally similar or slightly more effective than DFO at mobilizing cellular 59Fe and inhibiting iron uptake from human transferrin depending on the cell type. However, deferasirox potently inhibited DMS-53 xenograft growth in nude mice when given by oral gavage, with no marked alterations in normal tissue histology. To understand the antitumor activity of deferasirox, we investigated its effect on the expression of molecules that play key roles in metastasis, cell cycle control, and apoptosis. We demonstrated that deferasirox increased expression of the metastasis suppressor protein N-myc downstream-regulated gene 1 and upregulated the cyclin-dependent kinase inhibitor p21CIP1/WAF1 while decreasing cyclin D1 levels. Moreover, this agent increased the expression of apoptosis markers, including cleaved caspase-3 and cleaved poly(ADP-ribose) polymerase 1. Collectively, we demonstrate that deferasirox is an orally effective antitumor agent against solid tumors.12 page(s

    Targeting BET Proteins BRD2 and BRD3 in Combination with PI3K-AKT Inhibition as a Therapeutic Strategy for Ovarian Clear Cell Carcinoma

    No full text
    Ovarian clear cell carcinoma (OCCC) is a rare, chemo-resistant subtype of ovarian cancer. To identify novel therapeutic targets and combination therapies for OCCC, we subjected a set of patient-derived ovarian cancer cell lines to arrayed high-throughput siRNA and drug screening. The results indicated OCCC cells are vulnerable to knockdown of epigenetic gene targets such as bromodomain and extra-terminal domain (BET) proteins BRD2 and BRD3. Subsequent RNA interference assays, as well as BET inhibitor treatments, validated these BET proteins as potential therapeutic targets. Because development of resistance to single targeted agents is common, we next performed sensitizer drug screens to identify potential combination therapies with the BET inhibitor CPI0610. Several PI3K or AKT inhibitors were among the top drug combinations identified and subsequent work showed CPI0610 synergized with alpelisib or MK2206 by inducing p53-independent apoptosis. We further verified synergy between CPI0610 and PI3K-AKT pathway inhibitors alpelisib, MK2206, or ipatasertib in tumor organoids obtained directly from patients with OCCC. These findings indicate further preclinical evaluation of BET inhibitors, alone or in combination with PI3K-AKT inhibitors for OCCC, is warranted
    corecore