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Article Category: Molecular cancer biology 

 

Novelty and Impact (75 words):  

Melanoma is the deadliest type of skin cancer, and metastasis is the primary cause of 

death. We show that high RAB27A expression correlates with poor patient survival. 

Importantly, we identify RAB27A as a driver of melanoma metastasis via the 

secretion of pro-invasive exosomes. We provide insight into the RAB27A-mediated 

regulation of cancer-promoting exosomes and propose RAB27A as a novel prognostic 

factor and therapeutic target for prevention of melanoma metastasis. 
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Abstract:  

Despite recent advances in targeted and immune-based therapies, advanced stage 

melanoma remains a clinical challenge with a poor prognosis. Understanding the 

genes and cellular processes that drive progression and metastasis is critical for 

identifying new therapeutic strategies. Here, we found that the GTPase RAB27A was 

overexpressed in a subset of melanomas, which correlated with poor patient survival. 

Loss of RAB27A expression in melanoma cell lines inhibited 3D spheroid invasion 

and cell motility in vitro, and spontaneous metastasis in vivo. The reduced invasion 

phenotype was rescued by RAB27A-replete exosomes, but not RAB27A-knockdown 

exosomes, indicating that RAB27A is responsible for the generation of pro-invasive 

exosomes. Furthermore, while RAB27A loss did not alter the number of exosomes 

secreted, it did change exosome size and altered the composition and abundance of 

exosomal proteins, some of which are known to regulate cancer cell movement. Our 

data suggest that RAB27A promotes the biogenesis of a distinct pro-invasive 

exosome population. These findings support RAB27A as a key cancer regulator, as 

well as a potential prognostic marker and therapeutic target in melanoma. 
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Introduction: 

Recent therapeutic breakthroughs dramatically improved survival of advanced 

melanoma patients, although problems with primary and acquired drug resistance and 

toxicity still remain
1
. Improved understanding of the cellular and molecular cues 

driving melanoma metastasis and progression will likely identify novel druggable 

targets which ultimately may be utilized to prevent disease progression and improve 

patient survival. 

 

The RAB GTPase family (>60 members) regulates many steps in intracellular 

vesicular trafficking such as budding, movement, tethering, docking and fusion. 

RABs mediate trafficking of proteins and organelles involved in cell growth, survival 

and motility. Given these important functions, RABs have become a critical focus 

among cancer progression regulators
2
. RAB27A is expressed in a subset of 

specialized secretory cell types, and functions as a complex with the RAB27A-

specific effector melanophilin and the motor protein myosin-Va to regulate 

melanosome trafficking in melanocytes
3, 4

. RAB27A expression is regulated by 

microphthalmia-associated transcription factor (MITF), an oncogene amplified in 

approximately 10-20% of melanomas and associated with decreased patient survival
5, 

6
. Copy number and gene expression data in early passage melanoma cell lines 

identified RAB27A as a “driver” gene that promotes melanoma cell proliferation
7
. 

RAB27A has also been linked to exosome secretion and education of bone marrow 

progenitor cells to create a metastatic niche
8
. Exosomes are a well-known driver of 

cancer progression, and can influence cancer and non-cancer cell types. Notably, 

exosomes have recently been implicated in immunosuppression via the presence of 

PD-L1 on the surface of melanoma exosomes
9
.  
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The exact functions of RAB27A in melanoma biology, exosome biogenesis/secretion 

and disease progression remain ill-defined. Here, we investigated the expression of 

RAB27A in clinical melanoma samples and the function of RAB27A in melanoma 

cell lines. RAB27A was overexpressed in a subset of melanomas, and high gene and 

protein expression correlated with poor survival in melanoma patients. Furthermore, 

RAB27A promoted secretion of a distinct population of pro-invasive exosomes, and 

enhanced melanoma cell motility, invasion and metastasis. Together, our data 

demonstrate that RAB27A plays an integral role in melanoma cell invasion and 

metastasis via regulation of exosome biogenesis. 

 

Materials and Methods: 

Melanoma patient samples and RAB27A immunohistochemistry. Archival tissue 

pathology specimens identified from the Melanoma Institute Australia (MIA) 

Research Database as matching fresh-frozen tissue specimens banked by the MIA 

Biobank and included in The Cancer Genome Atlas (TCGA) project were utilized 

(n=95, from which 63 patients had sufficient tumor tissue for evaluation of RAB27A 

staining). Criteria for inclusion of MIA patients in the TCGA project were AJCC 

stage III (n=55) or stage IV (n=8) at time of collection from and follow-up data were 

retrieved from the MIA Research Database.  

 

Tissue microarray construction, processing and immunohistochemical staining is 

described in Supplementary Methods. Assessment of RAB27A protein expression 

was undertaken using an intensity score of 0-3. All immunohistochemistry (IHC) 

slides were independently reviewed (LAJ & RAS) and a consensus was reached on 

discrepant cases. 
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 7 

 

Differentially expressed gene analysis and gene set enrichment. RNAseq data 

(n=63; samples submitted to the TCGA by the MIA) were retrieved from the TCGA 

Data Portal for melanoma samples that matched the same tumor the IHC staining was 

performed on. The sequencing files were processed, normalized and visualized using 

R packages, „Rsubread‟ and „edgeR‟, within OmicsOffice Pro version 6 

(PerkinElmer)
10

. Briefly, the reads were aligned to the UCSC hg19 reference genome. 

Subsequently, data were summarized to reads count matrix representing the gene 

level expression using featureCounts function. These summarized gene values were 

normalized to fragments per kilobase million (FPKM) values
11

. RAB27A high and 

low groups were assigned based on IHC staining, and differentially expressed genes 

were identified as those with a p-value of <0.05 with Benjamini-Hochberg (BH) 

multiple testing correction at 5% false-discovery rate (FDR). Differentially expressed 

genes were annotated to cellular components (UniprotIDs) followed by Gene 

Ontology enrichment analysis using hypergeometric distribution model and FDR 

threshold of 0.05 to obtain significant results.  

Cell lines. The human melanoma cell lines C8161, 1205Lu, WM793, WM983B, 

WM983C, WM164 and 451Lu were genotypically characterized
12-14

 and grown as 

described
15

. All human melanoma cell lines and HEK293T were authenticated by 

STR fingerprinting (Molecular Genetics facility, Garvan Institute of Medical 

Research, Darlinghurst, NSW, Australia). B16-F10 melanoma cells were obtained 

from ATCC. WM164 cells stably expressing Fluorescence Ubiquitination Cell Cycle 

Indicator (FUCCI) were created as previously described
15, 16

. Cells were tested for 

mycoplasma using DAPI staining and high-magnification microscopy, as well as PCR 

at Cell Bank Australia. 
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3D melanoma spheroid assay. Melanoma spheroids were prepared as described 

previously
15, 17, 18

. At least three spheroids were implanted into collagen per condition, 

experiments were repeated at least three times. Spheroids were imaged using a Nikon 

Inverted Microscope (4 Plan Fluor objective NA 0.13) and blinded manual invasion 

measurements (distance from the edge of the spheroid to the invading cell front – 

three distances taken per spheroid) were performed using Volocity software (Perkin 

Elmer). 

Mouse metastasis model. Mouse work was approved by the Sydney Local Health 

District Animal Ethics Committee. B16-F10 cells were resuspended in culture 

medium at 410
7
 cells/ml. Immediately prior to injection, the cell suspension was 

diluted 1:1 with Matrigel (BD Biosciences). The cell/Matrigel suspension (25 μl) was 

injected intradermally into the ears of WB6 mice (510
5
 cells/mouse). Tumor size 

was measured using digital Vernier calipers and calculated using the formula: Volume 

= (width)
2
  length/2. Health was assessed by monitoring behavior, weight, and tumor 

appearance. Upon sacrifice 9-13 days post-injection (when tumors reached 

approximately 500 mm
3
), the draining retroauricular lymph nodes and corresponding 

control lymph nodes from the uninjected ear were harvested in PBS, fixed in formalin 

and examined for visible (black) metastases using a Leica M205 FA stereomicroscope 

(Leica Plan APO 1.0 objective).   

Exosome purification. WM164 and WM983C cells were cultured in medium 

supplemented with 1% exosome-depleted FBS (Exo-FBS, System Biosciences). B16-

F10 cells were cultured in medium supplemented with 10% exosome-depleted FBS 

(HyClone FBS, GE lifesciences, with bovine exosomes depleted by 

ultracentrifugation at 100,000  g for 18 h). Conditioned medium was collected from 
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48h cell cultures, centrifuged at 300  g for 10 min to remove floating cells and then 

centrifuged again at 20,000  g for 35 min. Exosomes were then collected by 

ultracentrifugation of the supernatant at 100,000  g for 70 min. The exosome pellets 

were resuspended in 12 ml of PBS and harvested by centrifugation at 100,000  g for 

a further 70 min. 

Although we acknowledge a recent position description from the International Society 

for Extracellular Vesicles that indicates current methods are not sufficient to identify 

exosomes as opposed to other EVs
19

, we use the term “exosome” to describe the 

extracellular vesicles (EVs) derived from our melanoma cells. Our EVs are positive 

for proteins commonly found in exosome preparations, are negative for proteins not 

expected in exosomes and conform to the size range commonly described for 

exosomes
20

. The methods we use to purify and characterise our extracellular vesicles 

are consistent with the methods suggested as the minimal experimental requirements 

to claim the presence of extracellular vesicles
19

. 

Proteomic analysis. Exosomal proteomics was performed by reverse-phase high-

pressure liquid chromatography mass spectrometry. Detailed protocols are described 

in Supplementary Methods. Proteins with significantly higher abundance in the 

control exosomes were analyzed by IPA (Ingenuity Pathway Analysis, QIAGEN 

bioinformatics) using the accession ID and normalized abundance counting. 

Further details on materials and methods can be found in Supplementary Methods.  
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Results: 

RAB27A is overexpressed in melanoma compared to benign nevi, and is 

associated with decreased patient survival. 

To compare the expression of RAB27A in normal skin, benign nevi and melanoma, we 

analyzed publicly-available microarray data in silico (Gene Expression Omnibus; 

GDS1375)
21

. RAB27A was upregulated in melanomas relative to nevi or normal skin, 

although RAB27A expression levels between individual melanoma samples were 

highly variable (Figure 1A). In another publicly available dataset we observed an 

upregulation of RAB27A mRNA levels with increasing stages of melanoma 

progression (Gene Expression Omnibus; GDS1989
22

; Supplementary Figure S1A). 

RAB27A protein was detected via Western blotting in all metastatic melanoma cell 

lines tested, with high expression in 1205Lu, WM983B, WM983C, WM164 and 

451Lu (Figure 1B).  

 

To determine if RAB27A expression was associated with melanoma patient outcomes, 

we analyzed TCGA gene expression data
23

. High RAB27A mRNA expression (top 

20% of samples) was associated with decreased melanoma-specific survival in stage 

III melanoma patients compared to those with low levels of RAB27A (bottom 20% of 

samples; Figure 1C, Supplementary Figure S1B). To confirm the association of 

RAB27A expression with reduced survival at the protein level, we performed 

immunohistochemistry (IHC) of RAB27A in a subset of the same TCGA samples. 

Melanomas showed a range of RAB27A staining graded as 0 (none) to 3 (high) for 

intensity (Figure 1D). RAB27A typically showed granular staining within the 

cytoplasm of melanoma cells (Supplementary Figure S1C). The moderate/high 

RAB27A (intensity 2-3) stage III melanoma samples again showed decreased 
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melanoma-specific survival compared to negative/low (intensity 0-1) samples, 

although this association did not reach significance (Log Rank p=0.084; Figure 1E). 

This may be due to the smaller number of samples that were suitable for staining 

(n=63) compared to the number of samples available for gene expression analysis 

(n=170). 

 

High RAB27A protein expression is associated with enriched expression of 

melanosome, exosome and exocytic vesicle associated genes in melanoma 

RAB27A protein intensity correlated with the RAB27A RNA expression level of the 

same TCGA samples as expected (r=0.21, p=0.000134). Further differential 

expression analysis grouped samples based on RAB27A medium/high vs. the 

negative/low IHC intensity. Differential expression (DE) analysis identified 177 DE 

genes between RAB27A-high and -low melanoma samples (Figure 1F). Functional 

enrichment analysis of the DE genes (FDR 0.05, min genes n=3) identified higher 

expression of gene ontology cellular components associated with melanosomes, 

lysosomes, exosomes and exocytic vesicles in RAB27A IHC-positive melanomas 

(Figure 1G, Supplementary Figure S1D). Pathway analysis identified enriched 

expression of genes involved in cell movement, cell-to-cell signaling/protein 

trafficking, cell morphology, lipid and carbohydrate metabolism, protein synthesis 

and degradation, and cell cycle in RAB27A-positive melanoma (Supplementary Fig 

S1E). IHC and gene expression data thus suggest that RAB27A correlates negatively 

with survival and is associated with genes that are involved in cancer promoting 

cellular functions and the exosome/secretory pathway. 
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RAB27A-knockdown in RAB27A-high melanoma cell lines decreases spheroid 

invasion and cell motility in 3D.  

To determine the biological role of RAB27A in melanoma, RAB27A was knocked 

down in the RAB27A-high cell lines WM164, WM983C and 1205Lu using lentiviral 

shRNA constructs. Western blotting confirmed substantial reduction of RAB27A 

protein levels (Figure 2A, Supplementary Figures S2B-C). To study invasion, we 

utilized a 3D melanoma spheroid model that mimics in vivo tumor architecture and 

microenvironment
15

. RAB27A-knockdown (KD) in these RAB27A-high cell lines 

resulted in strongly reduced invasion into the collagen matrix using three effective 

RAB27A shRNAs (sh#1, sh#2, sh#4; Figure 2B, 2C, Supplementary Figure S2A, 

S2D), whereas a less effective RAB27A shRNA (sh#3; Supplementary Figure S2A-B) 

did not impair invasion. In contrast to the RAB27A-high cell lines, RAB27A-KD in 

the RAB27A-low cell line C8161 did not reduce spheroid invasion (Supplementary 

Figure S2C-E), indicating that this melanoma cell line is not dependent on RAB27A 

for invasion. 

 

To determine the effect of RAB27A-KD on cell motility, cells were embedded in low 

density into 3D collagen matrix and tracked via live-imaging. In WM164 and 

WM983C, RAB27A-KD significantly reduced cell speed (Figure 2D). Although 

slower moving, RAB27A-KD cells still retained an ability to form long thin membrane 

projections into the matrix (Supplementary Movies S1, S2). To determine if changes 

in matrix metalloproteinases secreted into the medium were involved in the RAB27A-

KD invasion phenotype in RAB27A-high cell lines, we performed gelatin 

zymography on conditioned medium from WM164 control and RAB27A-KD cell 

lines. No changes in zymography bands were seen (Supplementary Figure S2F), 
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indicating that secreted gelatinases, likely MMP-2 and MMP-9, are not involved in 

the RAB27A-mediated invasion phenotype. Adhesion to collagen matrix was also not 

significantly altered by RAB27A-KD in WM164 (Supplementary Figure S2G), 

indicating that changes in collagen binding molecules are not involved in the 

RAB27A-KD invasion defect. 

 

RAB27A co-localizes with melanosome and multivesicular body/exosome 

markers in melanoma cell lines and exosomes/melanosomes are secreted from 

B16-F10 melanoma cells. 

To gain more insight into the function of RAB27A in melanoma cells, we 

investigated the intracellular localization using transient transfection of EGFP-tagged 

RAB27A. GFP-RAB fusion proteins including GFP-RAB27A have been shown to 

localize correctly to target membranes in melanocytic and other cell types
3, 24

. 

Immunofluorescence using an antibody to RAB27A showed co-localization with 

GFP-RAB27A expression (Supplementary Figure S3A), confirming the correct 

exogenous expression of RAB27A. Although a small amount of endogenous 

RAB27A was detected in melanoma cells, the signal was too weak to be used for co-

localization studies. Our human cell lines are hypopigmented, however, GFP-

RAB27A showed strong co-localization with melanosome marker Ta99 (Tyrosinase 

related protein 1, TYRP1) in WM983C (Figure 3A). WM164 did not express TYRP1, 

but there was partial co-localization of GFP-RAB27A with the melanosome marker 

HMB45 in both cell lines (g100 or pmel17, marker for stage II-III melanosomes; 

Supplementary Figure S3B-C). The exosome/late endosome/multivesicular body 

(MVB) marker CD63 co-localized with GFP-RAB27A in both WM983C and 

WM164, similar to the melanosome marker Ta99 (Figure 3B, Supplementary Figure 
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S3D-E).  In contrast, there was an inverse correlation of GFP-RAB27A with the 

DAPI DNA stain (Supplementary Figure S3E), and only a small amount of co-

localization with the lysosome marker LAMP-1 and the recycling endosome markers 

mCherry-Rab11a or internalized transferrin (Supplementary Figure S3F-H).  

 

CD63 and LAMP1 have been found in or associated with the melanosome
25, 26

, and 

TYRP1 has also been found in melanoma exosomes
8
. Given this potential marker 

overlap and the fact that our human melanoma cell lines do not contain mature 

melanosomes, it is difficult to accurately distinguish immature melanosomes, late 

endosomes/MVBs or lysosomes using these markers. Therefore, we investigated the 

localization of GFP-RAB27A in pigmented B16-F10 mouse melanoma cells. Both 

GFP-RAB27A and partially GFP-CD63 (Figure 3D) co-localized with mature 

melanosomes and the melanosome marker HMB45 (Supplementary Figure S3I-J). 

 

To investigate the relationship between melanosomes, MVBs and exosomes in 

melanoma cells in more detail, we performed TEM on B16-F10 cells. We have 

previously shown via TEM that various stages of melanosome maturation in 

melanoma cells and melanocytes can readily be differentiated from other organelles
3, 

27
. Black mature melanin-filled melanosomes were found either singly, or inside 

larger MVBs (Figure 3E). Smaller MVBs without melanin were also common. 

Melanin-filled melanosomes often appeared granular. Granular melanosomes have 

previously been described in melanoma cell lines (reviewed in
28

). Notably, 

extracellular vesicles of ~100 nm in size (exosomes) and granular melanosomes often 

appeared to be secreted together at the plasma membrane, suggesting a common 

secretory pathway.  
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RAB27A loss does not alter CD63
+
 MVB size, localization or number in 

melanoma cells. 

Given the co-localization of RAB27A with the exosome/MVB marker CD63, and the 

fact that RAB27 has been proposed to regulate MVB size/docking in HeLa cells
29

, we 

investigated the distribution of CD63 in WM983C and WM164 RAB27A-KD cells via 

immunofluorescence. No obvious changes in the distribution or size of CD63-positive 

structures were seen (Supplementary Figure S4A-B). There was also no change in the 

total amount of CD63 present in RAB27A-KD cells quantified by flow cytometry 

(Supplementary Figure S4C).  

 

To better clarify the effect of loss of RAB27A on melanosomes versus MVBs, 

RAB27A was knocked out from pigmented B16-F10 cells by CRISPR-Cas9. Single 

cell RAB27A-CRISPR clones were generated and Western blotting confirmed the 

complete loss of RAB27A (Figure 4A). Contrary to a previous report that loss of 

RAB27A resulted in an increase in MVB size in HeLa cells
29

, RAB27A-knockout did 

not increase MVB diameter in B16-F10 cells visualized via TEM (Supplementary 

Figure S4D). Ostrowski and colleagues measured CD63
+
 MVBs, while here we have 

measured any MVB with intraluminal vesicles. Similar to human RAB27A-KD cells, 

B16-F10 CRISPR RAB27A-KO cells showed no change in total CD63 exosome/MVB 

marker intensity via flow cytometry (Supplementary Figure S4E), indicating that loss 

of RAB27A does not cause accumulation of CD63
+
 MVBs within melanoma cells. 

 

CRISPR-knockout of Rab27a in B16-F10 mouse metastatic melanoma cells 

reduces melanoma cell motility in vitro and spontaneous metastasis in vivo.  
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To confirm that loss of Rab27a in B16-F10 melanoma cells also impaired invasion in 

vitro, we used live-cell imaging to track cell motility in collagen matrix. Similar to 

RAB27A-knockdown in human melanoma cell lines, B16-F10 CRISPR Rab27a-

knockout (KO) cells showed impaired motility in collagen (Figure 4B). B16-F10 cells 

did not readily form spheroids therefore spheroid invasion was not tested.  

 

B16-F10 cell tumors reliably form lymphatic metastases in mice
30

. To confirm that 

loss of Rab27a inhibits spontaneous melanoma metastasis in vivo, we injected B16-

F10 vector control or CRISPR Rab27a-KO cells intra-dermally into the ears of 

C57B1/6 mice. Loss of Rab27a did not alter tumor growth (Figure 4C). 

Approximately 9-13 days post-injection, mice were euthanized and the tumor-

draining lymph nodes were analyzed for metastasis. Lymphatic metastases were 

determined by the observation of a pigmented mass (Figure 4D). B16-F10 CRISPR 

Rab27a-KO clone tumor-bearing mice showed a marked decrease in metastasis 

compared to B16-F10 wild type and vector control tumors (Figure 4E), indicating that 

Rab27a promotes melanoma metastasis.  

 

RAB27A-knockdown invasion phenotype can be partially rescued by exosomes in 

RAB27A replete cell conditioned medium.  

Given the correlation of RAB27A expression with exosome and exocytic vesicle 

genes (Supplementary Figure S1D), and the previously described role of RAB27A in 

exosome secretion and the secretory pathway, we investigated whether secreted 

factors in conditioned medium played a role in the invasion and motility phenotypes 

observed in RAB27A-KD cells. The invasion defects of WM164 and WM983C 

RAB27A-KD spheroids were partially rescued by culturing in conditioned medium 
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from control cells (Figure 5A-B). Moreover, conditioned medium from WM164 or 

WM983 control cells rescued the reduced motility of RAB27A-KD cells in collagen 

(Figure 5C). These data indicate that secreted factors in the conditioned medium are 

involved in RAB27A-mediated invasion and motility of melanoma cells.   

 

To determine if exosomes were involved in the rescue of RAB27A-KD cell invasion 

with conditioned medium, WM164 control or RAB27A-KD cell conditioned medium 

was depleted of exosomes and other secreted vesicles via ultracentrifugation (at 

100,000g). Supernatant of the ultracentrifuged conditioned medium from WM164 

control cells was cultured with WM164 RAB27A-KD spheroids and the rescue of the 

RAB27A-KD cell invasion was no longer observed (Figure 5D). This suggests 

exosomes or other secreted vesicles are involved in the invasion defect caused by 

RAB27A knockdown.  

 

To confirm the role of exosomes in the RAB27A-KD invasion rescue by conditioned 

medium, purified exosomes from control WM164 cells were resuspended in exosome 

depleted medium and added to WM164 RAB27A-KD spheroids. Similar to 

conditioned medium, a partial rescue of the invasion phenotype in RAB27A-KD 

spheroids was observed after addition of exosomes purified from control cells (Figure 

5E). In contrast, exosomes purified from RAB27A-KD cells could not rescue the 

RAB27A-KD invasion defect (Figure 5E). To demonstrate cell line-independent 

contribution of exosomes in RAB27A-regulated melanoma invasion, exosomes 

purified from control and RAB27A-KD WM164 cells were added to intrinsically 

RAB27A-low WM793 spheroids. Exosomes secreted by WM164 control cells 

dramatically increased WM793 invasion compared to RAB27A-KD WM164 
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exosomes or the PBS only negative control (Figure 5F and 5G). Therefore, exosomes 

are strongly indicated to play a crucial role in RAB27A-mediated melanoma invasion. 

 

Loss of RAB27A does not alter the total protein level or number of exosomes 

secreted from melanoma cells, but does alter exosome protein composition and 

morphology. 

Previous studies have indicated that loss of RAB27A causes reduction of secreted 

exosomes from various cell types including melanoma cell lines
8, 29, 31

. To investigate 

if RAB27A knockdown influenced the number of secreted exosomes, we utilized 

NanoSight nanoparticle tracking and BCA protein assay to quantify the number and 

total protein levels of purified exosomes secreted from the same number of melanoma 

control or RAB27A-KD/KO cells. NanoSight measurements revealed purified 

exosomes were in the expected size range of around 100-200 nm (Supplementary 

Figure S5A). Western blotting of known exosome markers (CD9, TSG101, CD63; 

Figure 6A) and non-exosome negative control markers (GAPDH, Calnexin, GM130; 

Supplementary Figure S5B) confirmed the purity of our exosome samples.  

NanoSight and BCA measurements revealed no difference in the total number and 

total protein content of secreted exosomes after RAB27A-KD in WM164 and 

WM983C cells or Rab27a CRISPR-KO in B16-F10 cells (Figure 6B-C, 

Supplementary Figure S5C). To support this finding, we also performed siRNA-

knockdown of Rab27a in B16-F10 cells. Western blot analysis confirmed the 

reduction of Rab27a (Supplementary Figure S5D). Consistent with shRNA and 

CRISPR-KO, siRNA-knockdown of Rab27a did not decrease the number of secreted 

exosomes in B16-F10 melanoma cells (Supplementary Figure S5E). In contrast to 
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previous reports, our data suggest that Rab27a loss does not decrease exosome 

secretion in melanoma. 

 

To investigate whether exosome protein composition was altered by loss of RAB27A, 

exosome-specific protein levels found in exosomes isolated from the same number of 

control or RAB27A-KD melanoma cells were quantified through Western blotting. 

BCA assay confirmed similar amounts of total protein in the control and RAB27A-KD 

exosome samples (Figure 6C). In support of the co-localization studies, Western 

blotting confirmed that RAB27A protein is associated with purified exosomes in 

WM164 and B16-F10 melanoma cells, while RAB27A was not detected in exosomes 

from RAB27A-KD or CRISPR-KO cells, as expected (Figure 6A). A reduction of 

CD9 and an increase of TSG101 and CD63 were observed in the exosomes from 

WM164 RAB27A-KD and B16-F10 Rab27a CRISPR-KO cells compared to the 

control cells (Figure 6A). Notably, TEM of purified exosomes from WM164 cells 

showed an altered morphology after RAB27A-KD, with an increase in smaller 

exosomes (<100nm; Figure 6D-F). Although NanoSight did not detect changes in 

exosome size, this may be due to a lower sensitivity in measuring exosomes <100nm. 

To further investigate the alteration in exosome populations, IEM of CD63 on 

purified exosomes from WM164 cells was carried out. IEM indicated that the CD63-

enriched exosome population was smaller than the CD63
-
 population and was 

increased after RAB27A-KD (Figure 6G-I). This is consistent with the Western 

blotting data showing that CD63 is increased in RAB27A-KD exosomes (Figure 6A). 

These data suggest that while loss of RAB27A does not alter the number of exosomes 

secreted from melanoma cells, it does change distinct populations of exosomes. 
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Proteomics analysis identifies changes in exosome proteins involved in cell 

movement after RAB27A knockdown in melanoma cells 

To investigate the changes in exosome proteins caused by loss of RAB27A, exosomes 

secreted by WM164 non-target control and shRNA#1 RAB27A-KD cells were 

analyzed by label-free quantitative mass spectrometry. Biological triplicates were 

analyzed within each group and samples within each group clustered separately from 

samples in other groups (Supplementary Figure S6A). A total of 2187 proteins were 

identified across the exosome samples, 1994 of which were common to control and 

RAB27A-knockdown exosomes (Figure 6J). Of the proteins that were found in both 

samples, 103 were downregulated in knockdown exosomes and 250 were upregulated 

(Figure 6J, Supplementary Figure S6B). Consistent with our Western blotting results, 

RAB27A was lower and TSG101 higher in RAB27A-knockdown exosomes, 

confirming that there are differences in the abundance of exosome-specific proteins in 

exosomes secreted by RAB27A-deficient cells. CD63 was also higher in knockdown 

exosomes although the difference was not statistically significant (Supplementary 

Figure S6C). Of note, several RABs were enriched in exosomes after RAB27A-KD 

(Supplementary Figure S6D). These RABs may be involved in RAB27A-independent 

secretion of exosomes in melanoma cells. Especially RAB11 (including RAB11A and 

RAB11B; Supplementary Figure S6D), which has been implicated in regulating 

CD63
+
 exosome release

32
. The increase of RAB11 in KD exosomes was validated by 

Western blotting (Supplementary Figure S6E). 

 

To evaluate the functions of exosomal proteins associated with RAB27A function, we 

mapped the proteins that were only found in or of significantly higher abundance in 

the control exosomes to molecular pathways using Ingenuity Pathway Analysis (IPA, 
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QIAGEN Bioinformatics; Supplementary Table S1). Notably, the top molecular and 

cellular function identified was cellular movement, and the top networks identified 

included molecular transport, cellular movement, and cancer (Figure 6K). Proteins 

only detected or higher in control exosomes (Supplementary Table S1) that have 

previously been implicated in melanoma cell migration, invasion and metastasis 

include glypican 1 (GPC1)
33

 and EPH receptor B4 (EPHB4
34

; Supplementary Figure 

S6F) and plasminogen activator, tissue type (PLAT; Supplementary Table S1)
35

. The 

decrease of GPC1 in KD exosomes was validated by Western blotting 

(Supplementary Figure S6G). Analysis of gene ontology (GO)/Kyoto Encyclopedia of 

Genes and Genomes (KEGG) terms also indicated that RAB27A-replete exosomes 

are enriched for “extracellular matrix”, “Extracellular Matrix Disassembly”, “SRP-

dependant co-translation targeting to the membrane” and “Ribosome”. While 

RAB27A-KD exosomes are selectively enriched for “small GTPase superfamily”, 

“recycling endosome” and “ESCRTIII/ESCRTI” (Supplementary Figure S6H, 

Supplementary Table S2).  

The identified protein changes support our other data indicating that RAB27A 

promotes biogenesis and/or secretion of a distinct population of exosomes that 

enhance melanoma cell motility and invasion.  

 

Discussion: 

In this study, we have demonstrated that RAB27A is highly expressed in a subset of 

melanomas, and this high expression is associated with decreased survival in stage III 

melanoma patients. We show that RAB27A promotes 3D spheroid invasion and 

motility in vitro and metastasis in vivo in metastatic melanoma cell lines that highly 

express this protein. While RAB27A has previously been shown to promote 
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melanoma metastasis in a mouse model
8
, this was proposed to be due to „education‟ 

of bone marrow progenitor cells via RAB27A-dependent melanoma exosomes 

circulating in the blood and the creation of a metastatic niche. Exosome-educated 

bone marrow progenitor cells were shown to promote the creation of a metastatic 

niche. Here we demonstrate a direct role for RAB27A-dependent exosomes in 

promoting melanoma metastasis through paracrine or autocrine effects on melanoma 

cell motility and invasion. 

 

Our in vitro conditioned medium and purified exosome experiments indicate that 

RAB27A regulates the biogenesis of a distinct population of exosomes that promote 

melanoma cell invasion. The enriched expression of exosome-related genes in 

RAB27A-high clinical melanoma samples, as well as our data showing that RAB27A 

is present in melanoma exosomes, also supports a role for RAB27A in exosome 

regulation. Notably, melanoma cell lines producing high concentrations of exosomes 

have previously been shown to express relatively high levels of RAB27A
8
. 

 

Individual cells may produce functionally different populations of exosomes, 

depending on the pathways involved in exosome biogenesis (e.g. origin of 

endosomes/plasma membrane domains/trafficking proteins). Intracellular trafficking 

proteins regulate exosome biogenesis and secretion via several different mechanisms, 

such as targeting of cargo proteins to MVBs, which are the site of exosome 

generation, and targeting and fusion of MVBs to the plasma membrane for exosome 

secretion
36

. RAB27A has been linked to docking of CD63
+
 MVBs with the plasma 

membrane in HeLa cells
29

. Loss of RAB27A was shown to decrease exosome 

secretion in melanoma cells
8
 and other cell types (bladder carcinoma

37
, squamous cell 
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carcinoma
38

, breast cancer
31

, HeLa
29

). Surprisingly, we saw no decrease in the 

number of exosomes secreted, but we did see changes in both the morphology and 

protein content of exosomes after RAB27A loss. To support our results, we have used 

two different methods to quantify exosomes and multiple methods of RAB27A-

knockdown or -knockout in three different melanoma cell lines. Moreover, changes in 

exosome proteins and exosome size have been seen previously after RAB27A 

inhibition in 4T1 breast cancer cells
39

.  

 We hypothesize that in melanoma cells, RAB27A drives secretion of a larger pro-

invasive exosome population, characterized by high levels of CD9 and low levels of 

CD63/TSG101, while smaller CD63/TSG101-high melanoma exosomes are not pro-

invasive and are secreted via RAB27A-independent mechanisms. Notably, CD9 has 

been shown to be involved in mechanisms of exosome biogenesis independent of 

ESCRT (endosomal sorting complex required for transport)
40, 41

 while CD63 and 

TSG101 are involved in ESCRT-dependent exosome biogenesis
42

. Additionally, in 

RAB27A-KD exosomes we have discovered an upregulation of “ESCRT” GO terms 

and several syntenin and syndecan members (Supplementary Table S3), which are 

known to regulate ESCRT-dependent exosome biogenesis
43

. Proteomics analysis also 

identified an upregulation in RAB22A and RAB11 in RAB27A-KD exosomes, both of 

which have been implicated in exosome secretion previously
44, 45

. RAB11 has also 

been suggested to be required in CD63
+
 exosome release

32
. This may indicate a role 

for these RABs in an alternative, ESCRT-dependent exosome secretory pathway that 

is upregulated in the absence of RAB27A. Collectively, our data indicate that 

exosome biogenesis/trafficking may occur via different pathways in melanoma cells, 

only one of which is dependent on RAB27A; i.e. RAB27A drives secretion of pro-

invasive exosomes independent of ESCRT, while RAB27A-KD exosomes work in an 
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ESCRT- and possibly RAB11/RAB22A-dependent mechanism of exosome 

biogenesis.   

Exosomes have been linked previously to invasion and progression of various cancers 

(reviewed in
46

). Our data indicate that the cause of the pro-invasive effects of 

RAB27A-replete exosomes vs. exosomes secreted via RAB27A-independent means 

may be related to changes in exosome populations and their protein cargo. Pathway 

analysis of proteomic data revealed that the top cellular function associated with 

RAB27A-replete exosomes was cellular movement, and several proteins previously 

associated with cancer cell migration, invasion or metastasis were significantly higher 

in RAB27A-replete exosomes. In particular, EPHB4 is a tyrosine kinase receptor that 

has been found in cancer exosomes
47

 which promotes the migration of melanoma 

cells through RHO-mediated cytoskeletal reorganization
34

, and mediates site specific 

metastasis via adhesive interaction between melanoma and endothelial cells
48

. GPC1 

is a cell surface protein known to be enriched in cancer exosomes
49

, and is required 

for efficient metastasis of B16-F10 melanoma in vivo
33

. Proteins involved in 

modulating the extracellular matrix may also be involved in the pro-invasive action of 

RAB27A-replete exosomes, as gene ontology terms related to “extracellular matrix” 

and “extracellular matrix disassembly” were enriched in the proteomic analysis. For 

example, BMP-1 is a metalloprotease that has been linked to cancer metastasis and 

TGF- activation
50

; TGF- has a known role in melanoma migration and 

dissemination
51

. 

RAB GTPases are increasingly being implicated in cancer progression in many 

different cancer types
52

. Most notably, RAB7 has been linked to a lineage-specific 

tumor dependency in melanoma
53

. In contrast to RAB27A, RAB7 expression is not 
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regulated by MITF and high RAB7 expression was linked to a decrease in 

invasiveness and an increase in patient survival. Our data and the previous study by 

Akavia and co-workers
7
 indicate that RAB27A tumor dependency only occurs in 

melanomas with relatively high levels of RAB27A expression. RAB27A tumor-

dependency may also be largely restricted to melanoma, given that RAB27A protein 

has been shown to be enriched in melanoma compared to other cancer types, both in 

cell lines
53

 and patient tissue
54

. However, studies have also implicated RAB27A in 

colon cancer
55

, breast cancer
31, 56

, glioma
57

, pancreatic cancer
58

, hepatocellular 

carcinoma
59

 and bladder cancer
60

. Here we have highlighted the role of RAB27A in 

promoting exosome-mediated invasion and metastasis in melanoma. Our data, along 

with previous studies, suggest that RAB27A may play multiple roles in the 

progression of melanoma, and may be a novel therapeutic target and/or prognostic 

factor. 
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Figure Legends:  

 

Figure 1.  RAB27A is overexpressed in melanoma, associated with decreased 

patient survival and enriched expression of melanosome, exosome and exocytic 

vesicle associated genes in melanoma. 

A) RAB27A expression (probe 222294) in normal skin (n=7), benign nevi (n=18) 

and melanoma (n=45) samples from the gene expression omnibus dataset 

GDS1375. Error bars represent the mean  SEM. ****p0.0001.  

B) Western blot showing RAB27A in melanoma cell lines. The human 

embryonic kidney cell line HEK 293T served as a negative control. 

Representative of at least three independent experiments. 

C) Kaplan-Meier survival curves of stage III melanoma patients (TCGA dataset) 

stratified by RAB27A gene expression. The top 20% RAB27A expression 

samples were compared to the bottom 20% expression samples (n=34 patients 

per group). Survival is measured as the time interval from a patient's initial 

diagnosis to the date of death. Crosses indicate that patient follow-up data 

were unavailable after this point.  

D) RAB27A immunohistochemistry scoring (0-3); representative images (note 

that there were no cases with a score of 1). 

E) Kaplan-Meier survival curves of stage III melanoma patients (TCGA dataset) 

stratified by RAB27A protein expression. Patient survival grouped into 

negative/low (n=47) vs. moderate/high (n=17) RAB27A staining in melanoma 

tumor cells.  Survival is measured as the time interval from a patient's initial 
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pathologic diagnosis to the date of death. Crosses indicate that patient follow-

up data were unavailable after this point.  

F) Volcano plot showing fold change and p-values of differentially expressed 

genes in RAB27A-high samples (score 2/3) compared to RAB27A-low samples 

(score 0/1); RAB27A itself is highlighted. Fold change is indicated by different 

colors.  

G) Gene Ontology Functional Enrichment analysis was performed according to 

roles of cellular components. Top cellular components that correlated with 

RAB27A moderate-highly stained samples are shown. 

 

Figure 2. RAB27A knockdown in RAB27A-high melanoma cell lines decreases 

spheroid invasion and cell motility.  

A) Western blots showing the level of RAB27A protein in empty vector control 

(Vector), non-targeting shRNA control (non-target), RAB27A-knockdown 

cells: shRNA#1 (RAB27A sh1) and RAB27A shRNA#2 (RAB27A sh2) . 

Representative of at least 3 independent experiments. 

B) Phase contrast images of WM983C spheroid invasion 72 h after embedding in 

collagen. Cells express the non-targeting shRNA, RAB27A shRNA#1 or 

RAB27A shRNA#2 as indicated. Arrows indicate the distance cells have 

invaded away from the edge of the spheroid. Scale bars indicate 200m. 

Images are representative of seven independent experiments. 

C) Quantification of the distance cells have invaded away from the spheroid edge 

(normalized to the non-targeting shRNA control). Error bars represent the 

mean  SEM of at least n=3 independent experiments. Non-targeting control 

was compared to the other samples via ANOVA and a Dunnett‟s test.  
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D) Motility. Dots represent individual cell speed in 3D collagen. Error bars 

represent the mean  SEM. Non-targeting control was compared to the other 

samples via Kruskal-Wallis and Dunn‟s test. Graphs are representative of at 

least three independent experiments. 

 

Figure 3. RAB27A co-localizes with melanosome and multivesicular 

body/exosome markers in melanoma cell lines and exosomes/melanosomes are 

secreted from B16-F10 melanoma cells.  

A) Representative confocal immunofluorescence image (extended focus) of GFP-

RAB27A (green) and Ta99 (red) in WM983C cells. Scale bar in larger image 

= 20m, scale bar in zoom image = 5m.  

B) Representative confocal immunofluorescence image (extended focus) of GFP-

RAB27A (green) and CD63 (red) in WM983C cells. Scale in larger image = 

20m, scale bar in zoom image = 5m.  

C) Representative confocal fluorescence image (extended focus) of GFP-

RAB27A (green) and brightfield in B16-F10 cells. Scale bar in image = 20m. 

D) Representative confocal fluorescence image (extended focus) of GFP-CD63 

(green) and brightfield in B16-F10 cells. Scale bar in large image = 20m, 

scale bar in zoom image = 4m 

E) Transmission electron microscopy image of B16-F10 cells. Arrows indicate 

multivesicular bodies (Zoom MVBs) or exosome/melanosome secretion 

(Zoom PM). Scale bars 2 and 0.5 m, as indicated. 

A) to D) Black and white colors have been applied for single channel images and 

false colors representing the fluorophores of antibodies have been applied for 

the overlay images.  
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Figure 4. CRISPR knockout of RAB27A in the B16-F10 mouse metastatic 

melanoma cell line reduces melanoma cell motility in vitro and spontaneous 

metastasis in vivo. 

A) Western blots showing the level of RAB27A protein in B16-F10 wild type, 

empty vector control (vector clone), RAB27A CRISPR-knockout cells: clones 

1, 2 and 3. Representative of at least 3 independent experiments. 

B) Dots represent individual cell speed in 3D collagen. Error bars represent the 

mean  SEM. B16-F10 empty vector clone cells were compared to other 

groups via ANOVA and a Dunnett‟s test. Representative of at least 4 

independent experiments. 

C) Mean ear tumor volumes for each group of mice post-injection of B16-F10 

wild type, empty vector control (vector clone), RAB27A CRISPR KO clone 1 

(KO clone1), clone 2 (KO clone2) or clone 3 (KO clone3) cells. Error bars 

represent the mean  SEM of 8 mice within each group. This growth curve is 

representative of at least 2 independent experiments. 

D) Percentage of positive and negative lymphatic metastases are presented within 

each indicated group. Results are pooled from mice in 2-3 independent 

experiments, n=18 for Vector control clone, CRISPR KO clone1 and clone2, 

n=16 for wild type and CRISPR KO clone 3.  

E) Representative bright field color images of positive and negative lymphatic 

metastasis, scale bar=1mm.  

 

Figure 5. RAB27A-knockdown invasion phenotype can be partially rescued by 

exosomes in RAB27A replete cell conditioned medium. 
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A) Phase contrast images of WM983C spheroid invasion 72h after embedding in 

collagen. Cells are expressing the non-targeting control or RAB27A shRNA#1 

(indicated as non-target or RAB27A sh#1) and are cultured in conditioned 

medium from cells expressing non-targeting shRNA or RAB27A shRNA#1 

(indicated as non-target medium or sh#1 medium). Arrows indicate the 

distance cells have invaded away from the edge of the spheroid. Scale bar = 

100 m. Images are representative of 4 independent experiments.  

B) Quantification of the distance WM164 or WM983C cells have invaded away 

from the spheroid edge (normalized to the spheroids expressing non-targeting 

shRNA (non-target) cultured in conditioned medium from cells expressing 

non-targeting control vector (non-target con-medium). Error bars represent the 

mean  SEM of at least n=4 independent experiments. Each sample was 

compared to the other samples via One-way ANOVA and Tukey test.  

C) Motility. Dots represent individual cell speed in 3D collagen. Error bars 

represent mean  SEM. Cells expressing the non-targeting control or RAB27A 

shRNA#1 (indicated as NT or sh#1) were cultured in conditioned medium 

from cells expressing non-target control vector or RAB27A shRNA#1 

(indicated as positive of non-target con-medium or sh#1 con-medium, 

respectively). The figure is representative of at least 4 independent 

experiments. Each sample was compared to other samples via One-way 

ANOVA and Tukey test. 

D) Quantification of the distance cells have invaded away from the spheroid edge 

(same normalization as in Figure 5B). Error bars represent the mean  SEM of 

3 independent experiments. Spheroids expressing RAB27A shRNA#1 groups 

were compared to each other via One-way ANOVA and Tukey test. Non-
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target exo-dep con-medium indicates conditioned medium from cells 

expressing non-targeting control with exosome-depletion. 

E) Quantification of the distance cells have invaded away from the spheroid edge 

(same normalization as in Figure 5B). Error bars represent the mean  SEM of 

3 independent experiments. Spheroids expressing RAB27A shRNA#1 groups 

were compared to each other via One-way ANOVA and Tukey test. Exosome 

depleted medium supplied with purified exosomes secreted from cells 

expressing non-targeting vector control or RAB27A shRNA#1 are indicated as 

+non-target exosomes or +Sh#1 exosomes, respectively.    

F) Phase contrast images of WM793 spheroid invasion 72h after embedding in 

collagen. Exosome depleted medium supplied with purified exosomes secreted 

from 5 x 10
6
 WM164 cells expressing non-targeting vector control or RAB27A 

shRNA#1. Arrows indicate the distance cells have invaded away from the 

edge of the spheroid. Scale bars = 200 m. Images are representative of 3 

independent experiments. 

G) Quantification of the distance cells have invaded away from the spheroid edge 

(normalized to Non-target exosomes). Error bars represent the mean  SEM of 

3 independent experiments. Each sample was compared to the other samples 

via One-way ANOVA and Tukey test. 

 

Figure 6. Loss of RAB27A changes exosome protein content and morphology. 

A) Western blots showing levels of RAB27A, CD9 and TSG101 and CD63 in 

purified exosomes (exo) or cell lysates (CL) from B16-F10 and WM164 

control or KD/KO cells as indicated. For WM164, separate gels/blots for each 

marker were run in parallel using the same batch of purified exosomes. For 
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B16-F10, CD9 and Tsg101 blots are from one batch, and CD63 and Rab27a 

are from another batch of purified exosomes. Grey line in the B16-F10 blot 

indicates a lane cropped from the gel. Proteins were extracted from exosomes 

secreted by 2  10
7 

cells or cell lysates of 2  10
6
 cells. Representative of at 

least 3 independent experiments.  

B) NanoSight measurement of exosomes secreted by 10
6
 WM164 non-target 

control and RAB27A shRNA-KD cells or B16-F10 wild-type, vector control 

and Rab27a CRISPR-KO clone cells. Numbers of exosomes are normalized to 

the WM164 non-target control or B16-F10 vector control groups. Error bars 

represent the mean  SEM (n=5). WM164 non-target control or B16 vector 

control groups were compared to other groups via One-way ANOVA and a 

Dunnett‟s test; ns = not significant.  

C) BCA assay measurement of proteins in purified exosomes secreted 10
6
 

WM164 non-target control and RAB27A shRNA-KD cells or B16-F10 vector 

control and Rab27a CRISPR-KO cells. Protein levels of exosomes are 

normalized to the WM164 non-target control or B16-10 vector control groups. 

Error bars represent the mean  SEM (n=3). WM164 non-target control was 

compared to RAB27A shRNA#1 cells via student t test.  B16 vector control 

group was compared to other groups via One-way ANOVA and Dunnett‟s 

test; ns = not significant. 

D)  Transmission electron microscopy images (negative staining) of exosomes 

secreted by WM164 non-target control (non-target) and RAB27A shRNA#1 

KD (RAB27A sh#1) cells. Scale bar = 200nm. Representative of two 

independent experiments. 
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E) Exosome size. Dots represent diameter of individual exosomes secreted by 

WM164 non-target control (non-target) and RAB27A shRNA#1 KD (sh#1) 

cells, derived from 10 EM images per group. Error bars represent mean  

SEM. Significance was determined by student t test.   

F) Size distribution of exosomes from WM164 non-target or RAB27A KD cells.  

G) Immunogold EM images of CD63 staining on exosomes secreted by WM164 

non-target control (non-target) and RAB27A shRNA#1 KD (RAB27A sh#1) 

cells (indicated by arrows). Scale bar = 200nm. Representative of two 

independent experiments. 

H) Exosome size. Dots represent diameter of individual exosomes secreted by 

WM164 non-target control (non-target), RAB27A shRNA#1 KD (RAB27A 

sh#1) cells, diameter of individual CD63-positive exosomes secreted by 

WM164 non-target control (CD63+ in non-target) and RAB27A shRNA#1 KD 

(CD63+ in sh#1) cells respectively, derived from 20 EM images per group. 

Error bars represent mean  SEM. Each group was compared to other groups 

via One-way ANOVA and Tukey test. 

I) Percentages of CD63 positive and negative exosomes are presented within 

exosomes secreted by WM164 non-target control (non-target), RAB27A 

shRNA#1 KD (RAB27A sh#1) cells. Error bars represent mean of percentages 

 SEM from 2 independent experiments with total 20 images per group. 

Negative controls from two groups were compared via student t test.  

J) Differentially expressed proteins. Top: Venn diagram of proteins shared 

between WM164 non-target control and RAB27A shRNA#1 exosomes as well 

as unique proteins. Bottom: Venn diagram of common proteins in non-vector 

control and RAB27A shRNA#1 exosomes, showing number of proteins with 
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significantly higher or lower abundance, indicated as control > shRNA#1 or 

control < shRNA#1, respectively. 

K) Top networks and molecular/cellular functions of significant highly abundant 

exosomal proteins from WM164 non-target control cells compared to RAB27A 

KD. 

 
 

Supplementary Figure Legends:  

 

Supplementary Figure S1.  

A) Expression value of RAB27A mRNA from patient samples of normal skin, 

nevi and different stages of melanoma progression. Error bars indicate mean  

SEM of at least two patients.  

B) Distribution plot showing RAB27A gene expression levels within stage III 

melanoma patients.  Each dot indicates an individual patient. Dotted lines 

indicate the top and bottom 20% cut-off. 

C) Representative images of RAB27A immunohistochemical staining in patient 

melanoma sections, magnification as indicated.  

D) Genes within the top cellular components associated with RAB27A moderate-

high samples.  

E) Canonical Pathways, Diseases Associated Pathways, System Development 

Pathways and general Molecular Cellular Functions were visualized as bar 

graphs, each bar represents a term, indicates the number of genes with 

significant change in expression between the RAB27A-high or RAB27A-low 

group, colour codes the ratio of genes with higher/lower abundance between 

the RAB27A-high or RAB27A-low group (i.e. green: higher abundance in 
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RAB27A-high; red: higher abundance in RAB27A-low), and represents the 

enrichment score as bar length (-log10 FDR). 

 

Supplementary Figure S2.  

A) Phase contrast images of WM164 spheroid invasion 72h after embedding in 

collagen. Cells express the non-targeting shRNA control (non-target), 

RAB27A shRNA#1, RAB27A shRNA#2, RAB27A shRNA#3 or RAB27A 

shRNA#4 KD cells, as indicated. Arrows indicate the distance cells have 

invaded away from the edge of the spheroid. Scale bars indicate 200 m. 

Images are representative of at least 3 independent experiments. 

B) Western blots showing the level of RAB27A protein in non-targeting shRNA 

control (non-target), RAB27A-KD cells: shRNA#1 (27A sh1), RAB27A 

shRNA#2 (27A sh2), RAB27A shRNA#3 (27A sh3) and RAB27A shRNA#4 

(27A sh4). Representative of at least 3 independent experiments. 

C) Western blots showing the level of RAB27A protein in 1205Lu and C8161, 

empty vector control (vector), non-targeting shRNA control, RAB27A-KD 

cells: shRNA#1 (27A sh1) and RAB27A shRNA#2 (27A sh2). Representative 

of at least 3 independent experiments.  

D) Quantification of the distance cells have invaded away from the spheroid edge 

after 72h for 1205Lu and 24 h for C8161 (normalized to the non-targeting 

shRNA control). Error bars represent the mean  SEM of n=3 independent 

experiments. Non-targeting control was compared to the other samples via 

ANOVA and a Dunnett‟s test.  

E) Phase contrast images of C8161 spheroid invasion 24 h after embedding in 

collagen. Cells express the non-targeting shRNA, RAB27A shRNA#1 or #2 as 
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indicated. Arrows indicate the distance cells have invaded away from the edge 

of the spheroid. Images are representative of 3 independent experiments.  

F) Gelatin zymography showing the MMP activities in the medium derived from 

WM164 non-target control and RAB27A shRNA#1 KD cells. Representative 

of at least 3 independent experiments.  

G) MTS assay absorbance of WM164 vector control, non-target control, RAB27A 

shRNA#1 KD and RAB27A shRNA#2 KD cells that have adhered to collagen 

after 30 min of incubation (indicated as vector, non-target, sh1 and sh2 

accordingly). Empty well control was indicated as No cells. Error bars 

represent the mean  SEM of n=4 independent experiments.    

 

Supplementary Figure S3.  

A) Representative confocal immunofluorescence image (extended focus) of GFP-

RAB27A (green) and RAB27A Ab (red) in WM983C cells. Scale bar = 20 

m. 

B) Representative confocal immunofluorescence image (extended focus) of GFP-

RAB27A (green) and HMB45 Ab (red) in WM983C cells. Scale bar in larger 

image = 20 m. Scale bar in zoom image = 5 m. 

C) Representative confocal immunofluorescence image (extended focus) of GFP-

RAB27A (green) and HMB45 Ab (red) in WM164 cells. Scale bar in larger 

image = 20 m. Scale bar in zoom image = 5 m. 

D) Representative confocal immunofluorescence image (extended focus) of GFP-

RAB27A (green) and CD63 Ab (red) in WM164 cells. Scale bar = 20m.  
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E) Quantification of the correlation between the indicated markers using Pearsons 

correlation analysis. Error bars represent the mean  SEM of at least n=9 

individual cells from 3 independent experiments. 

F) Representative confocal immunofluorescence image (extended focus) of GFP-

RAB27A (green), mCherry-RAB11A (red) and Alexa647-tagged Transferrin 

(blue) after 60min uptake in WM164 cells. Scale bar = 20 m.  

G) Representative confocal immunofluorescence image (extended focus) of GFP-

RAB27A (green), LAMP1 Ab (red) in WM164 cells. Scale bar = 20 m.  

H) Representative confocal immunofluorescence image (extended focus) of GFP-

RAB27A (green), HMB45 Ab (red) and mCherry-RAB11A (blue) in 451Lu 

cells. Scale bar in larger image = 10 m. Scale bar in zoom images = 2 m. 

I) Representative confocal immunofluorescence image (extended focus) of GFP-

RAB27A (green) and HMB45 Ab (red) in B16-F10 cells. Scale bar = 20 m.  

J) Representative confocal immunofluorescence image (extended focus) of GFP-

CD63 (green) and HMB45 Ab (red) in B16F10 cells. Scale bar = 20 m.  

Black and white colors have been applied for single channel images and false 

colors representing the fluorophores of antibodies have been applied for the 

overlay images. 

 

Supplementary Figure S4.  

A) Representative confocal immunofluorescence image (extended focus) of 

CD63 Ab in WM983C control (non-target sh) or RAB27A shRNA#1 cells. 

Scale bar = 20 m. 
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B) Representative confocal immunofluorescence image (extended focus) of 

CD63 Ab (white) and DAPI (blue) in WM164 control (non-target) or RAB27A 

shRNA#1 cells. Scale bar = 20 m. 

C) Flow cytometry histogram of total CD63 Ab staining in permeabilized 

WM164 control or shRNA KD cells. 

D) Individual MVB diameter measurements from B16-F10 wild-type, vector or 

Rab27a CRISPR KO cells.  

E) Flow cytometry histogram of total CD63 Ab staining in permeabilized B16-

F10 wild-type (WT), vector control (vec2), CRISPR Rab27a KO clone 1 

(KO1) and clone 2 (KO2) cells versus secondary antibody only control 

(secondary only).  

 

Supplementary Figure S5. 

A) Representative NanoSight analysis of size distribution of exosomes secreted 

by WM164 and WM983 non-target control and RAB27A-KD cells or B16-F10 

empty vector control and Rab27a CRISPR KO cells. Representative of at least 

4 independent experiments.  

B) Western blots showing levels of GAPDH, GM130 and Calnexin in exosomes 

(exo) or cell lysates (CL) from B16-F10 and WM164 control or KD/KO cells 

as indicated. Proteins were extracted from exosomes secreted by 2  10
7 

cells 

or cell lysates of 2  10
6
 cells. Representative of at least 3 independent 

experiments.  

C) Nanosight measurement of number of exosomes and BCA assay of total 

proteins in the exosomes secreted by WM983C Non-target control or RAB27A 

KD cells. Numbers of exosomes or amount of protein are normalized to 
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WM983C non-target control cells. Error bars represent the mean  SEM, n=3. 

Significance was determined via student t test; ns = not significant.  

D) Western blots showing proteins levels of Rab27a in B16-F10 mock 

transfection control, negative control siRNA#1, negative control siRNA#2 and 

Rab27a siRNA cells. Representative of at least 3 independent experiments. 

E) NanoSight measurement of number of exosomes secreted by 10
6
 B16-F10 

mock control, negative siRNA#1, negative siRNA#2 and Rab27a siRNA cells.  

Exosomes numbers were normalized to B16-F10 negative siRNA#1. Error 

bars represent the mean  SEM, n=3 B16-F10 negative siRNA#1 group was 

compared to other groups via One-way ANOVA and Dunnett‟s test; ns = not 

significant. 

  

Supplementary Figure S6. 

 

A) Principal component analysis (PCA) of correlation of three biological repeats 

within each group (as indicated).  

B) Volcano plot of fold change and p-value of expression of proteins of 

exosomes secreted by WM164 replete cells versus RAB27A Sh#1 cells. 

Differential expressed proteins were determined by more than 1.5-fold change 

of expression and P<0.05 (see highlighted proteins within the red and green 

boxes).   

C) Normalized protein abundance counting of RAB27A, CD63 and TSG101 in 

the exosomes secreted by WM164 non-target control and RAB27A sh#1 cells 

(indicated as control and Sh#1), error bars represent the mean  SEM.      

D) Normalized protein abundance counting of RAB22A, RAB6B, RAB9A, 

RAB11A and RAB11B in the exosomes secreted by WM164 non-target 
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control and sh#1 cells (indicated as control and Sh#1), error bars represent the 

mean  SEM. 

E) Left: Western blots showing levels of RAB11 and RAB27a in exosomes (Exo) 

or cell lysates (CL) from WM164 control or sh#1 KD cells as indicated. 

Western blotting against tubulin was carried out as a loading control. Protein 

was extracted from exosomes secreted by 2  10
7 

cells or cell lysates of 2  

10
6
 cells. Representative of at least 3 independent experiments.  

Right: Western band intensity fold change of RAB11 protein in RAB27A KD 

exosomes relative to control exosomes. Error bars represent the mean  SEM 

of three independent experiments.  

F) Normalized protein abundance counting of GPC1 and EPHB4 proteins in the 

exosomes secreted by WM164 non-target control and Sh#1 cells (indicated as 

control and Sh#1), error bars represent the mean  SEM. 

G) Western blots showing levels of Glypican-1 (GPC1) in exosomes (Exo) or cell 

lysates (CL) from WM164 control or sh#1 KD cells as indicated. Western 

blotting against tubulin was carried out as a loading control. Protein was 

extracted from exosomes secreted by 2  10
7 

cells or cell lysates of 2  10
6
 

cells. Representative of at least 3 independent experiments. 

H) Bar graphs of GO/KEGG terms, each bar represents a term, indicates the 

number of proteins that changed abundance after RAB27A KD (FDR < 0.05). 

Color codes the ratio of proteins with higher/lower abundance after RAB27A 

KD (green: higher abundance in RAB27AKD; red: higher abundance in 

control). Bar length represents the enrichment score (-log10 FDR). 
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