137 research outputs found

    Rab25 increases cellular ATP and glycogen stores protecting cancer cells from bioenergetic stress

    Get PDF
    Cancer cells are metabolically stressed during tumour progression due to limited tumour vascularity and resultant nutrient, growth factor and oxygen deficiency that can induce cell death and inhibit tumour growth. We demonstrate that Rab25, a small GTPase involved in endosomal recycling, that is genomically amplified in multiple tumour lineages, is a key regulator of cellular bioenergetics and autophagy. RAB25 enhanced survival during nutrient stress by preventing apoptosis and autophagy via binding and activating AKT leading to increased glucose uptake and improved cellular bioenergetics. Unexpectedly, Rab25 induced the accumulation of glycogen in epithelial cancer cells, a process not previously identified. Strikingly, an increase in basal ATP levels combined with AKT-dependent increases in glucose uptake and glycogen storage allowed maintenance of ATP levels during bioenergetic stress. The clinical relevance of these findings was validated by the ability of a Rab25-dependent expression profile enriched for bioenergetics targets to identify patients with a poor prognosis. Thus, Rab25 is an unexpected regulator of cellular bioenergetics implicated as a useful biomarker and potential therapeutic target

    The collagen receptor discoidin domain receptor 1b enhances integrin β1-mediated cell migration by interacting with talin and promoting Rac1 activation.

    Get PDF
    Integrins and discoidin domain receptors (DDRs) 1 and 2 promote cell adhesion and migration on both fibrillar and non fibrillar collagens. Collagen I contains DDR and integrin selective binding motifs; however, the relative contribution of these two receptors in regulating cell migration is unclear. DDR1 has five isoforms (DDR1a-e), with most cells expressing the DDR1a and DDR1b isoforms. We show that human embryonic kidney 293 cells expressing DDR1b migrate more than DDR1a expressing cells on DDR selective substrata as well as on collagen I in vitro. In addition, DDR1b expressing cells show increased lung colonization after tail vein injection in nude mice. DDR1a and DDR1b differ from each other by an extra 37 amino acids in the DDR1b cytoplasmic domain. Interestingly, these 37 amino acids contain an NPxY motif which is a central control module within the cytoplasmic domain of β integrins and acts by binding scaffold proteins, including talin. Using purified recombinant DDR1 cytoplasmic tail proteins, we show that DDR1b directly binds talin with higher affinity than DDR1a. In cells, DDR1b, but not DDR1a, colocalizes with talin and integrin β1 to focal adhesions and enhances integrin β1-mediated cell migration. Moreover, we show that DDR1b promotes cell migration by enhancing Rac1 activation. Mechanistically DDR1b interacts with the GTPase-activating protein (GAP) Breakpoint cluster region protein (BCR) thus reducing its GAP activity and enhancing Rac activation. Our study identifies DDR1b as a major driver of cell migration and talin and BCR as key players in the interplay between integrins and DDR1b in regulating cell migration

    MTSS1 and SCAMP1 cooperate to prevent invasion in breast cancer

    Get PDF
    Cell–cell adhesions constitute the structural “glue” that retains cells together and contributes to tissue organisation and physiological function. The integrity of these structures is regulated by extracellular and intracellular signals and pathways that act on the functional units of cell adhesion such as the cell adhesion molecules/adhesion receptors, the extracellular matrix (ECM) proteins and the cytoplasmic plaque/peripheral membrane proteins. In advanced cancer, these regulatory pathways are dysregulated and lead to cell–cell adhesion disassembly, increased invasion and metastasis. The Metastasis suppressor protein 1 (MTSS1) plays a key role in the maintenance of cell–cell adhesions and its loss correlates with tumour progression in a variety of cancers. However, the mechanisms that regulate its function are not well-known. Using a system biology approach, we unravelled potential interacting partners of MTSS1. We found that the secretory carrier-associated membrane protein 1 (SCAMP1), a molecule involved in post-Golgi recycling pathways and in endosome cell membrane recycling, enhances Mtss1 anti-invasive function in HER2+/ER−/PR− breast cancer, by promoting its protein trafficking leading to elevated levels of RAC1-GTP and increased cell–cell adhesions. This was clinically tested in HER2 breast cancer tissue and shown that loss of MTSS1 and SCAMP1 correlates with reduced disease-specific survival. In summary, we provide evidence of the cooperative roles of MTSS1 and SCAMP1 in preventing HER2+/ER−/PR− breast cancer invasion and we show that the loss of Mtss1 and Scamp1 results in a more aggressive cancer cell phenotype

    Inhibition of gastric H,K-ATPase activity and gastric epithelial cell IL-8 secretion by the pyrrolizine derivative ML 3000

    Get PDF
    BACKGROUND: ML 3000 ([2,2-dimethyl-6-(4-chlorophenyl)-7-phenyl-2,3-dihydro-1H-pyrrolizine-5-yl]-acetic acid) is an inhibitor of both cyclooxygenase and 5-lipoxygenase in vitro, and shows promise as a novel non-steroidal anti-inflammatory drug (NSAID). Unlike conventional NSAIDs which are associated with gastric ulcerogenic effects, ML 3000 causes little or no damage to the gastric mucosa, even though it significantly depresses gastric prostaglandin synthesis. METHODS: As part of an effort to clarify mechanisms underlying the gastric sparing properties of ML 3000, we studied the effects of ML 3000 on H,K-ATPase activity in vitro, on acid accumulation in isolated gastric parietal cells, and on IL-8 secretion by gastric epithelial cells in culture. RESULTS: SCH28080-sensitive H,K-ATPase activity in highly-purified pig gastric microsomes was dose-dependently inhibited by ML 3000 (IC(50) = 16.4 μM). Inhibition was reversible, and insensitive to ML 3000 acidification in the pH range 2.0–8.0. In rabbit gastric parietal cells, ML 3000 dose-dependently inhibited histamine-stimulated acid accumulation (IC(50) = 40 μM) and forskolin-stimulated acid accumulation (IC(50) = 45 μM). Lastly, in human gastric adenocarcinoma (AGS) cells, ML 3000 dose-dependently inhibited both baseline and IL-1β-stimulated (20 ng/ml) IL-8 secretion with IC(50)s of 0.46 μM and 1.1 μM respectively. CONCLUSION: The data indicate that ML 3000 affects acid-secretory mechanisms downstream of cAMP mobilization induced by histamine H(2) receptor activation, that it directly inhibits H,K-ATPase specific activity, and that baseline gastric epithelial cell IL-8 secretory inhibition may be mediated by ML 3000 inhibition of 5-lipoxygenase activity. We conclude that these gastric function inhibitory data may underlie the gastric sparing properties of ML 3000

    Altered expression of a putative progenitor cell marker DCAMKL1 in the rat gastric mucosa in regeneration, metaplasia and dysplasia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Doublecortin and calcium/calmodulin-dependent protein kinase-like-1 (DCAMKL1) is a candidate marker for progenitor cells in the gastrointestinal mucosa. Lineage cells in the gastric mucosa are derived from progenitor cells, but this process can be altered after injury. Therefore, we explored DCAMKL1 expression under pathological conditions.</p> <p>Methods</p> <p>An immunohistochemical analysis was performed in rat stomach with acute superficial injury, chronic ulcer, intestinal metaplasia and dysplasia.</p> <p>Results</p> <p>DCAMKL1 was exclusively expressed in immature quiescent cells in the isthmus of normal fundic glands, where putative progenitor cells are thought to reside. DCAMKL1-positive cells and proliferating cells shed into the lumen after superficial injury and re-appeared during the regenerative process, mainly in the superficial mucosa. In the marginal mucosa around the active ulcer, parietal and chief cells diminished, foveolar hyperplasia was evident, and trefoil factor family 2 (TFF2)/spasmolytic polypeptide-expressing metaplasia (SPEM) emerged at the gland base. DCAMKL1 cells re-emerged in the deep mucosa juxtaposed with SPEM and proliferating cells. In the healing ulcer, the TFF2 cell population expanded and seemed to redifferentiate to chief cells, while proliferating cells and DCAMKL1 cells appeared above and below the TFF2 cells to promote healing. SPEM appeared and PCNA cells increased in the intestinalized mucosa, and DCAMKL1 was expressed in the proximity of the PCNA cells in the deep mucosa. DCAMKL1, PCNA and TFF2 were expressed in different dysplastic cells lining dilated glands near SPEM.</p> <p>Conclusion</p> <p>The ultrastructural appearance of DCAMKL1-positive cells and the expression patterns of DCAMKL1 in normal and pathological states indicate that the cells belong to a progenitor cell population. DCAMKL1 expression is closely associated with TFF2/SPEM cells after injury. DCAMKL1 cells repopulate close to proliferating, hyperplastic, metaplastic and dysplastic cells, and the progenitor zone shifts according to the pathological circumstances.</p

    Phosphorylation of Rab-coupling protein by LMTK3 controls Rab14-dependent EphA2 trafficking to promote cell:cell repulsion

    Get PDF
    The Rab GTPase effector, Rab-coupling protein (RCP) is known to promote invasive behaviour in vitro by controlling integrin and receptor tyrosine kinase (RTK) trafficking, but how RCP influences metastasis in vivo is unclear. Here we identify an RTK of the Eph family, EphA2, to be a cargo of an RCP-regulated endocytic pathway which controls cell:cell repulsion and metastasis in vivo. Phosphorylation of RCP at Ser435 by Lemur tyrosine kinase-3 (LMTK3) and of EphA2 at Ser897 by Akt are both necessary to promote Rab14-dependent (and Rab11-independent) trafficking of EphA2 which generates cell:cell repulsion events that drive tumour cells apart. Genetic disruption of RCP or EphA2 opposes cell:cell repulsion and metastasis in an autochthonous mouse model of pancreatic adenocarcinoma—whereas conditional knockout of another RCP cargo, α5 integrin, does not suppress pancreatic cancer metastasis—indicating a role for RCP-dependent trafficking of an Eph receptor to drive tumour dissemination in vivo

    Targeted Deletion of Kcne2 Causes Gastritis Cystica Profunda and Gastric Neoplasia

    Get PDF
    Gastric cancer is the second leading cause of cancer death worldwide. Predisposing factors include achlorhydria, Helicobacter pylori infection, oxyntic atrophy and TFF2-expressing metaplasia. In parietal cells, apical potassium channels comprising the KCNQ1 α subunit and the KCNE2 β subunit provide a K+ efflux current to facilitate gastric acid secretion by the apical H+K+ATPase. Accordingly, genetic deletion of murine Kcnq1 or Kcne2 impairs gastric acid secretion. Other evidence has suggested a role for KCNE2 in human gastric cancer cell proliferation, independent of its role in gastric acidification. Here, we demonstrate that 1-year-old Kcne2−/− mice in a pathogen-free environment all exhibit a severe gastric preneoplastic phenotype comprising gastritis cystica profunda, 6-fold increased stomach mass, increased Ki67 and nuclear Cyclin D1 expression, and TFF2- and cytokeratin 7-expressing metaplasia. Some Kcne2−/−mice also exhibited pyloric polypoid adenomas extending into the duodenum, and neoplastic invasion of thin walled vessels in the sub-mucosa. Finally, analysis of human gastric cancer tissue indicated reduced parietal cell KCNE2 expression. Together with previous findings, the results suggest KCNE2 disruption as a possible risk factor for gastric neoplasia

    An in vivo screen identifies ependymoma oncogenes and tumor-suppressor genes

    Get PDF
    Cancers are characterized by non-random chromosome copy number alterations that presumably contain oncogenes and tumor-suppressor genes (TSGs). The affected loci are often large, making it difficult to pinpoint which genes are driving the cancer. Here we report a cross-species in vivo screen of 84 candidate oncogenes and 39 candidate TSGs, located within 28 recurrent chromosomal alterations in ependymoma. Through a series of mouse models, we validate eight new ependymoma oncogenes and ten new ependymoma TSGs that converge on a small number of cell functions, including vesicle trafficking, DNA modification and cholesterol biosynthesis, identifying these as potential new therapeutic targets.We are grateful to F.B. Gertler (Massachusetts Institute of Technology) and S. Gupton (University of North Carolina) for the generous gift of the VAMP7-phlorin construct and the staffs of the Hartwell Center for Bioinformatics and Biotechnology, the Small Animal Imaging Center, the Animal Resources Center, the Cell and Tissue Imaging Center, and the Flow Cytometry and Cell Sorting Shared Resource at St. Jude Children's Research Hospital for technical assistance. This work was supported by grants from the US National Institutes of Health (R01CA129541, P01CA96832 and P30CA021765, R.J.G.), by the Collaborative Ependymoma Research Network (CERN) and by the American Lebanese Syrian Associated Charities (ALSAC)

    Deregulation of Rab and Rab Effector Genes in Bladder Cancer

    Get PDF
    Growing evidence indicates that Rab GTPases, key regulators of intracellular transport in eukaryotic cells, play an important role in cancer. We analysed the deregulation at the transcriptional level of the genes encoding Rab proteins and Rab-interacting proteins in bladder cancer pathogenesis, distinguishing between the two main progression pathways so far identified in bladder cancer: the Ta pathway characterized by a high frequency of FGFR3 mutation and the carcinoma in situ pathway where no or infrequent FGFR3 mutations have been identified. A systematic literature search identified 61 genes encoding Rab proteins and 223 genes encoding Rab-interacting proteins. Transcriptomic data were obtained for normal urothelium samples and for two independent bladder cancer data sets corresponding to 152 and 75 tumors. Gene deregulation was analysed with the SAM (significant analysis of microarray) test or the binomial test. Overall, 30 genes were down-regulated, and 13 were up-regulated in the tumor samples. Five of these deregulated genes (LEPRE1, MICAL2, RAB23, STXBP1, SYTL1) were specifically deregulated in FGFR3-non-mutated muscle-invasive tumors. No gene encoding a Rab or Rab-interacting protein was found to be specifically deregulated in FGFR3-mutated tumors. Cluster analysis showed that the RAB27 gene cluster (comprising the genes encoding RAB27 and its interacting partners) was deregulated and that this deregulation was associated with both pathways of bladder cancer pathogenesis. Finally, we found that the expression of KIF20A and ZWINT was associated with that of proliferation markers and that the expression of MLPH, MYO5B, RAB11A, RAB11FIP1, RAB20 and SYTL2 was associated with that of urothelial cell differentiation markers. This systematic analysis of Rab and Rab effector gene deregulation in bladder cancer, taking relevant tumor subgroups into account, provides insight into the possible roles of Rab proteins and their effectors in bladder cancer pathogenesis. This approach is applicable to other group of genes and types of cancer
    corecore