11 research outputs found

    Comparative sequence analysis of the potato cyst nematode resistance locus H1 reveals a major lack of co-linearity between three haplotypes in potato (Solanum tuberosum ssp.)

    Get PDF
    The H1 locus confers resistance to the potato cyst nematode Globodera rostochiensis pathotypes 1 and 4. It is positioned at the distal end of chromosome V of the diploid Solanum tuberosum genotype SH83-92-488 (SH) on an introgression segment derived from S. tuberosum ssp. andigena. Markers from a high-resolution genetic map of the H1 locus (Bakker et al. in Theor Appl Genet 109:146–152, 2004) were used to screen a BAC library to construct a physical map covering a 341-kb region of the resistant haplotype coming from SH. For comparison, physical maps were also generated of the two haplotypes from the diploid susceptible genotype RH89-039-16 (S. tuberosum ssp. tuberosum/S. phureja), spanning syntenic regions of 700 and 319 kb. Gene predictions on the genomic segments resulted in the identification of a large cluster consisting of variable numbers of the CC-NB-LRR type of R genes for each haplotype. Furthermore, the regions were interspersed with numerous transposable elements and genes coding for an extensin-like protein and an amino acid transporter. Comparative analysis revealed a major lack of gene order conservation in the sequences of the three closely related haplotypes. Our data provide insight in the evolutionary mechanisms shaping the H1 locus and will facilitate the map-based cloning of the H1 resistance gene

    Identification of a resistance gene Rpi-dlc1 to Phytophthora infestans in European accessions of Solanum dulcamara

    Get PDF
    Initial screening of 14 Solanum dulcamara accessions enabled the identification of individuals resistant and susceptible to Phytophthora infestans. Crosses between contrasting genotypes resulted in three F2–BC1 populations segregating for resistance to late blight in a laboratory assay and under field conditions. Genetic profiling of one of these populations using 128 AFLP primers generated three markers linked to the resistant phenotype. Blast analysis of the sequenced markers resulted in a plausible gene position on the distal end of the long arm of chromosome 9 that could be confirmed by CAPS markers. Thus, we describe a first resistant gene, named Rpi-dlc1, from S. dulcamara, a Solanum species native to Europe. In addition, one population was tested for broadness of resistance responses using a set of seven additional P. infestans isolates, varying in virulence. This indicated the possible presence of additional Rpi genes

    Post activation potentiation (PAP) and its application in the development of speed and explosive strength in female soccer players: A review

    Get PDF
    The presented review presents the results of current research on the use of PAP during resistance training of soccer players. Researchers who have examined the mechanism behind PAP following complex strength training, have established a relationship between post-activation potentiation and improvements in speed and explosive strength of athletes. Most of the presented papers in this review have confirmed the effectiveness of PAP in eliciting performance in tasks requiring speed, jumping ability and agility in soccer players. These studies were discussed in detail in terms of research groups, methods, training means and study results. Many of these publications have also considered the aspect of rest intervals between the conditioning exercise and the subsequent explosive activity. Most authors indicate the necessity to individualize the time of the rest interval, depending on the athletes training status, strength level and most of all on the intensity and volume of the conditioning exercise. Some scientists have also attempted to incorporate PAP into warm-up protocols, especially prior to speed and power training sessions. A two-way analysis of the impact of PAP, separately on sprint speed and power of the players. The focus was on demonstrating the positive or negative impact of activating exercises on the two variables discussed. The last part of the paper presents the conclusions drawn based on the results of the studies and suggests the objectives of future research. Most publications have documented the results for male participants, whereas little data is available regarding the use of PAP in female soccer players

    ORIGINAL RESEARCH Semen quality parameters and embryo lethality in mice deficient for Trp53 protein

    No full text
    Trp53 is a protein which is able to control semen parameters in mice, but the extent of that control depends on the genetic background of the mouse strain. Males from C57BL/6Kw, 129/Sv, C57BL×129-p53+/+ (wild type controls) and C57BL×129-p53-/- (mutants) strains were used in the study, and histology and light microscopy were applied to evaluate the influence of genetic background and Trp53 (p53) genotype on testes morphology and semen quality in male mice. We showed that sperm head morphology, maturity and tail membrane integrity were controlled only by the genetic background of C57BL/6Kw and 129/Sv males, while testes weight and sperm concentration depended on both the genetic background and p53 genotype. Cell accumulation in seminiferous tubules may be responsible for heavier testes of p53-deficient males. In addition, to examine the effect of sex and p53 genotype on embryo lethality, pairs of control (C57BL×129-p53+/+) and heterozygous (C57BL×129-p53+/-) mice were examined. Before day 7 post coitum (dpc), female and male embryos were equally resorbed in both crosses types. After 7 dpc, preferential female embryo lethality in the heterozygote pairs was responsible for the skewed sex ratio in their progeny. Also, mutant female and male newborns wer

    MNK1/2 inhibition limits oncogenicity and metastasis of KIT-mutant melanoma

    No full text
    Melanoma can be stratified into unique subtypes based on distinct pathologies. The acral/mucosal melanoma subtype is characterized by aberrant and constitutive activation of the proto-oncogene receptor tyrosine kinase C-KIT, which drives tumorigenesis. Treatment of these melanoma patients with C-KIT inhibitors has proven challenging, prompting us to investigate the downstream effectors of the C-KIT receptor. We determined that C-KIT stimulates MAP kinase-interacting serine/threonine kinases 1 and 2 (MNK1/2), which phosphorylate eukaryotic translation initiation factor 4E (eIF4E) and render it oncogenic. Depletion of MNK1/2 in melanoma cells with oncogenic C-KIT inhibited cell migration and mRNA translation of the transcriptional repressor SNAI1 and the cell cycle gene CCNE1. This suggested that blocking MNK1/2 activity may inhibit tumor progression, at least in part, by blocking translation initiation of mRNAs encoding cell migration proteins. Moreover, we developed an MNK1/2 inhibitor (SEL201), and found that SEL201-treated KIT-mutant melanoma cells had lower oncogenicity and reduced metastatic ability. Clinically, tumors from melanoma patients harboring KIT mutations displayed a marked increase in MNK1 and phospho-eIF4E. Thus, our studies indicate that blocking MNK1/2 exerts potent antimelanoma effects and support blocking MNK1/2 as a potential strategy to treat patients positive for KIT mutations.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore