43 research outputs found

    Giant protists (xenophyophores, Foraminifera) are exceptionally diverse in parts of the abyssal eastern Pacific licensed for polymetallic nodule exploration

    Get PDF
    Xenophyophores, giant, fragile, agglutinated foraminifera (protists), are major constituents of the abyssal megafauna in the equatorial Pacific Clarion-Clipperton Zone (CCZ), a region where seabed mining of polymetallic nodules may occur in the future. As part of a baseline study of benthic communities we made extensive collections of xenophyophores in two areas (UK-1 and OMS) licensed for exploration by the International Seabed Authority. Based on test morphology, we distinguished 36 morphospecies (34 new to science) among 130 specimens. Twenty of these morphospecies yielded 184 DNA sequences, a 14-fold increase in genetic data for xenophyophores that confirms their high diversity in the eastern CCZ. A further 15 morphospecies (8 new to science) were recognised in samples from two other areas (APEI-6 and Russian exploration license area) within or adjacent to the CCZ. This large number of species confirms that the CCZ is a focal area for xenophyophore diversity. More broadly, it represents an unprecedented increase in the known global diversity of xenophyophores and suggests that many species remain undiscovered in the World's oceans. Xenophyophores are often sessile on nodules in the CCZ, making these delicate organisms particularly vulnerable to mining impacts. They can also play a crucial role in deep-sea ecosystems, providing habitat structures for meiofaunal and macrofaunal organisms and enhancing the organic content of sediments surrounding their tests. The loss of xenophyophores due to seabed mining may therefore have wider implications for the recovery of benthic communities following major human disturbances on the abyssal seafloor

    Five new species and two new genera of xenophyophores (Foraminifera: Rhizaria) from part of the abyssal equatorial Pacific licensed for polymetallic nodule exploration

    Get PDF
    Based on a combination of morphological and molecular data, we describe five new species and two new genera of xenophyophores from the Clarion–Clipperton Zone (abyssal eastern Pacific), an area with commercially valuable seafloor deposits of polymetallic nodules. Bizarria bryiformis gen. et sp. nov. displays unusual features, notably an organic-walled test, largely devoid of agglutinated particles, comprising interconnected branches growing upwards from the nodule substrate; the bases of the branches contain dark masses of waste material (stercomare) and pale strands of cytoplasm (granellare), the whitish, tuft-like extremities contain sediment particles. Tendalia reteformis gen. et sp. nov. forms a delicate network of agglutinated tubes. Shinkaiya contorta sp. nov. is characterized by a contorted, partly reticulated plate-like test while the simpler plate-like test of Galatheammina interstincta sp. nov. combines characters typical of Galatheammina and Psammina. In Semipsammina mattaeformis sp. nov., a thin, delicate test with one or more tubular extensions forms a flat canopy over the mat-like stercomare encrusting the nodule substrate. Tendalia reteformis and S. contorta are free-living; the other species are sessile on nodules. Together, they illustrate the considerable morphological diversity of xenophyophores in a region where they dominate the megafauna, and highlight some major taxonomic challenges posed by these giant monothalamous foraminifera

    Giant protists (xenophyophores, Foraminifera) are exceptionally diverse in parts of the abyssal eastern Pacific licensed for polymetallic nodule exploration

    Get PDF
    Giant protists (xenophyophores, Foraminifera) are exceptionally diverse in parts of the abyssal eastern Pacific licensed for polymetallic nodule exploratio

    Temporal variability of live (stained) benthic foraminiferal faunas in a river-dominated shelf – Faunal response to rapid changes of the river influence (Rhône prodelta, NW Mediterranean)

    Get PDF
    In the context of the French research project CHACCRA (Climate and Human-induced Alterations in Carbon Cycling at the River-seA connection), living (rose Bengal-stained) benthic foraminifera were investigated at two stations (24 and 67 m depth) in the Rhône prodelta (NW Mediterranean, Gulf of Lions). The aim of this study was to precise the response of benthic foraminiferal faunas to temporal changes of the Rhône River inputs (e.g. organic and terrigeneous material). Each site was sampled in April 2007, September 2007, May 2008 and December 2008, permitting to observe foraminiferal faunas of the 63–150 and >150 μm size fractions under a wide range of environmental conditions. Obvious variations in foraminiferal faunal composition were observed during the four investigated periods at the shallowest Station A located in the close vicinity of the Rhône River mouth. After major Rhône River flood events, different colonisation stages were observed with foraminiferal faunas responding with an opportunistic strategy few days to weeks after the creation of a peculiar sedimentary environment (<i>Leptohalysis scottii</i>, May 2008) or high organic matter supplies (<i>Ammonia tepida</i>, December 2008). Under more stable conditions, relatively diverse and equilibrated faunas grew in the sediments. Species benefited from noticeable input of riverine phytodetritus to the sediment during spring bloom conditions (April 2007; e.g. <i>Bolivina dilatata</i>, <i>Nonionella stella</i>, <i>Stainforthia fusiformis</i>), or high amounts of still bio-available organic matter under more oligotrophic conditions (September 2007; e.g. <i>Ammonia tepida</i>, <i>Psammosphaera fusca</i>). The reduced influence of the Rhône River input at the farther Station N led to less contrasted environmental conditions during the four sampling periods, and so to less obvious variations in foraminiferal faunal composition. During reduced riverine influence (i.e. low Rhône discharge), species able to feed on fresh phytodetritus (e.g. <i>Clavulina cylindrica</i>, <i>Hopkinsina atlantica</i>, <i>Nonionella iridea</i> and <i>Nonionella turgida</i>) benefited from eutrophic conditions of the spring bloom (April 2007, May 2008). Conversely, the occurrence of <i>Nouria polymorphinoides</i> under oligotrophic conditions (September 2007, December 2008) was indicative of a benthic environment potentially disturbed by bottom currents. This study put into evidence the extremely rapid response of benthic foraminiferal faunas to strong variations in environmental conditions mostly induced by the Rhône dynamics

    Xenophyophores (Rhizaria, Foraminifera) from the Eastern Clarion-Clipperton Zone (equatorial Pacific): the Genus Psammina

    Get PDF
    Xenophyophores are important megafaunal organisms in the abyssal Clarion-Clipperton Zone (CCZ; equatorial Pacific), a region hosting commercially significant deposits of polymetallic nodules. Previous studies assigned those with attached, fan-like tests to Psammina limbata, a species described from the central CCZ based on morphology. Here, we redescribe the holotype of P. limbata and then show that limbata-like morphotypes collected in the eastern CCZ include three genetically distinct species. Psammina aff. limbata is closest morphologically to P. limbata. The others are described as P. microgranulata sp. nov. and P. rotunda sp. nov. These fan-shaped species form a well-supported clade with P. tortilis sp. nov., a morphologically variable species exhibiting features typical of both Psammina and Semipsammina. A second clade containing Psammina sp. 3, and two species questionably assigned to Galatheammina branches at the base of this group. The genus Psammina includes another 9 described species for which there are no genetic data, leaving open the question of whether Psammina as a whole is monophyletic. Our study increases the number of xenophyophore species described from the eastern CCZ from 8 to 11, with a further 25 morphotypes currently undescribed. Many additional species of these giant foraminifera undoubtedly await discovery in abyssal settings

    The London Workshop on the Biogeography and Connectivity of the Clarion-Clipperton Zone

    Get PDF
    Recent years have seen a rapid increase in survey and sampling expeditions to the Clarion-Clipperton Zone (CCZ) abyssal plain, a vast area of the central Pacific that is currently being actively explored for deep-sea minerals (ISA, 2016). Critical to the development of evidence-based environmental policy in the CCZ are data on the biogeography and connectivity of species at a CCZ-regional level. The London Workshop on the Biogeography and Connectivity of the CCZ was convened to support the integration and synthesis of data from European Union (EU) CCZ projects, supported by the EU Managing Impacts of Deep-Sea Resource Exploitation (MIDAS) and EU Joint Programming Initiative Healthy and Productive Seas and Oceans (JPI Oceans) projects. The London Workshop had three clear goals: (1) To explore, review and synthesise the latest molecular biogeography and connectivity data from across recent CCZ cruises from both contractor and academia-funded projects; (2) To develop complementary and collaborative institutional and program-based academic publication plans to avoid duplication of effort and ensure maximum collaborative impact; (3) To plan a joint synthetic data publication highlighting key results from a range of planned molecular biogeography/connectivity publications. 32 participants attended the workshop at the Natural History Museum in London from 10-12 May 2016. Presentations and discussions are summarised in this report covering (1) overviews of current CCZ environmental projects, (2) policy and industry perspectives, (3) synthesis of DNA taxonomy and biogeography studies, (4) summaries of the latest population genetic studies, (5) summaries of the latest broader morphological context, (6) an overview of publication and proposal plans to maximise collaborative opportunities and finally a series of workshop recommendations

    Scientific and budgetary trade‐offs between morphological and molecular methods for deep‐sea biodiversity assessment

    No full text
    Deep-sea biodiversity, a source of critical ecological functions and ecosystem services, is increasingly subject to the threat of disturbance from existing practices (e.g., fishing, waste disposal, oil and gas extraction) as well as emerging industries such as deep-seabed mining. Current scientific tools may not be adequate for monitoring and assessing subsequent changes to biodiversity. In this paper, we evaluate the scientific and budgetary trade-offs associated with morphology-based taxonomy and metabarcoding approaches to biodiversity surveys in the context of nascent deep-seabed mining for polymetallic nodules in the Clarion-Clipperton Zone, the area of most intense interest. For the dominant taxa of benthic meiofauna, we discuss the types of information produced by these methods and use cost-effectiveness analysis to compare their abilities to yield biological and ecological data for use in environmental assessment and management. On the basis of our evaluation, morphology-based taxonomy is less cost-effective than metabarcoding but offers scientific advantages, such as the generation of density, biomass, and size structure data. Approaches that combine the two methods during the environmental assessment phase of commercial activities may facilitate future biodiversity monitoring and assessment for deep-seabed mining and for other activities in remote deep-sea habitats, for which taxonomic data and expertise are limited. Integr Environ Assess Manag 2021;00:1–9. © 2021 SETA

    Live–dead comparison of benthic foraminiferal faunas from the Rhône prodelta (Gulf of Lions, NW Mediterranean): Development of a proxy for palaeoenvironmental reconstructions

    Get PDF
    Dead benthic foraminiferal faunas (> 150 μm) from the Rhône prodelta (Gulf of Lions, NW Mediterranean) were analysed at 41 stations (15–100 m water depth) sampled in June 2005 and September 2006, and compared to the living faunas investigated during previous studies at the same stations. The comparison between dead and living assemblages enhances the understanding of taphonomic processes that may modify the composition of the dead faunas in this area. We observed a loss of individuals from living to dead assemblages of species characterised by a fairly fragile test and therefore more prone to fragmentation or dissolution (e.g., Bolivina alata, Quinqueloculina tenuicollis). Allochthonous dead and/or live specimens may be transported to some parts of the prodelta, particularly the shallowest sites where hydrodynamic processes (i.e., river flood, storm swells, longshore currents) are more intense. These specimens may originate from relict deltaic structures (e.g., Elphidium spp. from the lobe of Bras de Fer) or from surrounding areas (e.g., Ammonia beccarii forma beccarii from the river). Opportunistic species (e.g., Bulimina marginata, Cassidulina carinata) characterised by high reproductive rates have much higher relative abundances in the dead than in the living fauna. Cluster analyses based on dead foraminiferal assemblages divide our study area into four main thanatofacies directly related to distinct local environmental conditions prevailing in the prodelta. Close to the river mouth, Ammonia beccarii forma beccarii and Ammonia tepida are found in sediments subject to a high riverine influence (i.e., bottom currents, high organic and inorganic material input of continental origin). Elphidium species are abundant in the silty-sandy relict deltaic lobe west of the river mouth which is characterised by strong longshore currents that disturb the benthic environment. Nonion fabum, Rectuvigerina phlegeri and Valvulineria bradyana are found along the coast west of the Rhône River mouth, in the area defined as the “river plume” thanatofacies. In the more stable and deeper prodeltaic area, species known to feed on fresh phytodetritus (e.g., Bulimina aculeata/marginata, C. carinata, Hyalinea balthica) dominate the faunas. Since only minor variations in species relative abundances and spatial distributional patterns are observed between the living and the dead faunas, we consider that our thanatofacies have not been influenced by substantial transport of dead tests. This suggests that fossil benthic foraminifera can provide a reliable tool for investigating the development of the palaeo-Rhône prodelta
    corecore