164 research outputs found

    Grassland futures in Great Britain – Productivity assessment and scenarios for land use change opportunities

    Get PDF
    This is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).To optimise trade-offs provided by future changes in grassland use intensity, spatially and temporally explicit estimates of respective grassland productivities are required at the systems level. Here, we benchmark the potential national availability of grassland biomass, identify optimal strategies for its management, and investigate the relative importance of intensification over reversion (prioritising productivity versus environmental ecosystem services). Process-conservative meta-models for different grasslands were used to calculate the baseline dry matter yields (DMY; 1961–1990) at 1 km2 resolution for the whole UK. The effects of climate change, rising atmospheric [CO2] and technological progress on baseline DMYs were used to estimate future grassland productivities (up to 2050) for low and medium CO2 emission scenarios of UKCP09. UK benchmark productivities of 12.5, 8.7 and 2.8 t/ha on temporary, permanent and rough-grazing grassland, respectively, accounted for productivity gains by 2010. By 2050, productivities under medium emission scenario are predicted to increase to 15.5 and 9.8 t/ha on temporary and permanent grassland, respectively, but not on rough grassland. Based on surveyed grassland distributions for Great Britain in 2010 the annual availability of grassland biomass is likely to rise from 64 to 72 million tonnes by 2050. Assuming optimal N application could close existing productivity gaps of ca. 40% a range of management options could deliver additional 21 ∗ 106 tonnes of biomass available for bioenergy. Scenarios of changes in grassland use intensity demonstrated considerable scope for maintaining or further increasing grassland production and sparing some grassland for the provision of environmental ecosystem services.Peer reviewedFinal Published versio

    Climate factors contribute to grassland net primary productivity

    Get PDF
    Our call set out to enlarge the evidence base and methods for improving and evaluating grasslands in a changing environment as a sustainable ecosystem for all life [...

    Environmental costs and benefits of growing Miscanthus for bioenergy in the UK

    Get PDF
    Funded by BBSRC. Grant Number: LK0863 Natural Environment Research Council (NERC) Carbo-BioCrop project. Grant Number: NE/H01067X/1 MAGLUE projectPeer reviewedPublisher PD

    Optimizing the bioenergy water footprint by selecting SRC willow canopy phenotypes: regional scenario simulations

    Get PDF
    © The Author(s) 2019. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.Background and Aims: Bioenergy is central for the future energy mix to mitigate climate change impacts; however, its intricate link with the water cycle calls for an evaluation of the carbon–water nexus in biomass production. The great challenge is to optimize trade-offs between carbon harvest and water use by choosing cultivars that combine low water use with high productivity. Methods: Regional scenarios were simulated over a range of willow genotype × environment interactions for the major UK soil × climate variations with the process-based model LUCASS. Soil available water capacity (SAWC) ranged from 51 to 251 mm and weather represented the north-west (wet, cool), north-east (dry, cool), south-west (wet, warm) and south-east (dry, warm) of the UK. Scenario simulations were evaluated for small/open narrow-leaf (NL) versus large/closed broad-leaf (BL) willow canopy phenotypes using baseline (1965–89) and warmer recent (1990–2014) weather data. Key Results: The low productivity under baseline climate in the north could be compensated by choosing BL cultivars (e.g. ‘Endurance’). Recent warmer climate increased average productivity by 0.5–2.5 t ha−1, especially in the north. The modern NL cultivar ‘Resolution’ had the smallest and most efficient water use. On marginal soils (SAWC <100 mm), yields remained below an economic threshold of 9 t ha−1 more frequently under baseline than recent climate. In the drought-prone south-east, ‘Endurance’ yielded less than ‘Resolution’, which consumed on average 17 mm year−1 less water. Assuming a planting area of 10 000 ha, in droughty years between 1.3 and 4.5 × 106 m3 of water could be saved, with a small yield penalty, for ‘Resolution’. Conclusions: With an increase in air temperature and occasional water scarcities expected with climate change, high-yielding NL cultivars should be the preferred choice for sustainable use of marginal lands and reduced competition with agricultural food crops.Peer reviewedFinal Published versio

    Deriving wheat crop productivity indicators using Sentinel-1 time series

    Get PDF
    High-frequency Earth observation (EO) data have been shown to be effective in identifying crops and monitoring their development. The purpose of this paper is to derive quantitative indicators of crop productivity using synthetic aperture radar (SAR). This study shows that the field-specific SAR time series can be used to characterise growth and maturation periods and to estimate the performance of cereals. Winter wheat fields on the Rothamsted Research farm in Harpenden (UK) were selected for the analysis during three cropping seasons (2017 to 2019). Average SAR backscatter from Sentinel-1 satellites was extracted for each field and temporal analysis was applied to the backscatter cross-polarisation ratio (VH/VV). The calculation of the different curve parameters during the growing period involves (i) fitting of two logistic curves to the dynamics of the SAR time series, which describe timing and intensity of growth and maturation, respectively; (ii) plotting the associated first and second derivative in order to assist the determination of key stages in the crop development; and (iii) exploring the correlation matrix for the derived indicators and their predictive power for yield. The results show that the day of the year of the maximum VH/VV value was negatively correlated with yield (r = −0.56), and the duration of “full” vegetation was positively correlated with yield (r = 0.61). Significant seasonal variation in the timing of peak vegetation (p = 0.042), the midpoint of growth (p = 0.037), the duration of the growing season (p = 0.039) and yield (p = 0.016) were observed and were consistent with observations of crop phenology. Further research is required to obtain a more detailed picture of the uncertainty of the presented novel methodology, as well as its validity across a wider range of agroecosystem

    Septic rupture of the ascending aorta after aortocoronary bypass surgery

    Get PDF
    We describe an exceptional case of non-fatal septic rupture of the ascending aorta in a patient with sternal dehiscence, deep sternal wound infection (DSWI) and pleural empyema after aortocoronary bypass surgery. Routine follow-up computed tomography (CT) detected a mediastinal pseudoaneurysm originating from the ascending aorta. Thereby, massive and irregular sternal bone defects and contrast-enhancing mediastinal soft tissue suggest osteomyelitis and highly-active and aggressive DSWI as initial triggers. Urgent thoracotomy 1 day later included ascending aorta reconstruction, total sternum resection and broad wound debridement. Follow-up CT 1 year later showed a regular postoperative result in a fully recovered patient

    Translating and applying a simulation model to enhance understanding of grassland management

    Get PDF
    Each new generation of grassland managers could benefit from an improved understanding of how modification of nitrogen application and harvest dates in response to different weather and soil conditions will affect grass yields and quality. The purpose of this study was to develop a freely available grass yield simulation model, validated for England and Wales, and to examine its strengths and weaknesses as a teaching tool for improving grass management. The model, called LINGRA-N-Plus, was implemented in a Microsoft Excel spreadsheet and iteratively evaluated by students and practitioners (farmers, consultants, and researchers) in a series of workshops across the UK over 2 years. The iterative feedback led to the addition of new algorithms, an improved user interface, and the development of a teaching guide. The students and practitioners identified the ease of use and the capacity to understand, visualize and evaluate how decisions, such as variation of cutting intervals, affect grass yields as strengths of the model. We propose that an effective teaching tool must achieve an appropriate balance between being sufficiently detailed to demonstrate the major relationships (e.g., the effect of nitrogen on grass yields) whilst not becoming so complex that the relationships become incomprehensible. We observed that improving the user-interface allowed us to extend the scope of the model without reducing the level of comprehension. The students appeared to be interested in the explanatory nature of the model whilst the practitioners were more interested in the application of a validated model to enhance their decision making

    First detection of a diamagnetic cavity at comet 67P/Churyumov-Gerasimenko

    Get PDF
    International audienceContext: The Rosetta magnetometer RPC-MAG has been exploring the plasma environment of comet 67P/Churyumov-Gerasimenko since August 2014. The first months were dominated by low-frequency waves which evolved into more complex features. However, at the end of July 2015, close to perihelion, the magnetometer detected a region that did not contain any magnetic field at all.Aims: These signatures match the appearance of a diamagnetic cavity as was observed at comet 1P/Halley in 1986. The cavity here is more extended than previously predicted by models and features unusual magnetic field configurations, which need to be explainedMethods: The onboard magnetometer data were analyzed in detail and used to estimate the outgassing rate. A minimum variance analysis was used to determine boundary normals.Results. Our analysis of the data acquired by the Rosetta Plasma Consortium instrumentation confirms the existence of a diamagnetic cavity. The size is larger than predicted by simulations, however. One possible explanation are instabilities that are propagating along the cavity boundary and possibly a low magnetic pressure in the solar wind. This conclusion is supported by a change in sign of the Sun-pointing component of the magnetic field. Evidence also indicates that the cavity boundary is moving with variable velocities ranging from 230−500 m/s

    Assessing on-farm productivity of Miscanthus crops by combining soil mapping, yield modelling and remote sensing

    Get PDF
    Crown Copyright © 2015 Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).Biomass from agricultural land is a key component of any sustainable bioenergy strategy, and 2nd generation, ligno-cellulosic feedstocks are part of the UK government policy to meet the target of reduced CO2 emission. Pre-harvest estimates of the biomass supply potential are usually based on experimental evidence and little is known about the yield gap between biologically obtainable and actual achievable on-farm biomass yields. We propose a systematic integration of mapped information fit for estimating obtainable yields using an empirical model, observed on-farm yields and remote sensing. Thereby, one can identify the sources of yield variation and supply uncertainty. Spatially explicit Miscanthus potential yields are compared with delivered on-farm yields from established crops ≄5 years after planting, surveyed among participants in the Energy Crop Scheme. Actual on-farm yield averaged at 8.94 Mg ha−1 and it varied greatly (coefficient of variation 34%), largely irrespective of soil type. The average yield gap on clay soils was much larger than that on sandy or loamy soils (37% vs 10%). Miscanthus is noticeably slower to establish on clay soils as shown by fitting a logistic Gompertz equation to yield time series. However, gaps in crop cover as identified by density counts, visual inspection (Google Earth) and remote sensing (Landsat-5) correlated with observed on-farm yields suggesting patchiness as causal for reduced yields. The analysis shows ways to improve the agronomy for these new crops to increase economic returns within the supply chain and the environmental benefits (reduced GHG emission, greater carbon sequestration) and reduce the land demand of bio-energy production.Peer reviewedFinal Published versio
    • 

    corecore