601 research outputs found

    A Sub-Type of Familial Pancreatic Cancer: Evidence and Implications of Loss-of-Function Polymorphisms in Indoleamine-2,3-Dioxygenase-2.

    Get PDF
    BACKGROUND: Variation in an individual\u27s genetic status can impact the development of pancreatic ductal adenocarcinoma; however, the majority of familial pancreatic cancers (FPC) cannot yet be attributed to a specific inherited mutation. We present data suggesting a correlation between loss-of-function single nucleotide polymorphisms (SNPs) in an immune regulator gene, indoleamine-2,3-dioxygenase-2 (IDO2), and an increased risk of FPC. STUDY DESIGN: Germline DNA from patients who underwent resection for pancreatic ductal adenocarcinoma (n = 79) was sequenced for the IDO2 SNPs R248W and Y359Stop. Genotypes resulting in inactivation of IDO2 (Y325X homozygous, R248W homozygous) were labeled as homozygous, and the other genotypes were grouped as wild-type or heterozygous. Genotype distributions of each SNP were analyzed for Hardy-Weinberg deviation. A genotype frequency set from the 1000 Genomes Project (n = 99) was used as a genetic control for genotype distribution comparisons. RESULTS: A significant 2-fold increase in the overall prevalence of the Y359Stop homozygous genotype compared with the expected Hardy-Weinberg equilibrium was noted (p \u3c 0.05). Familial pancreatic cancer was noted in 15 cases (19%) and comparison of the FPC cohort set to the genetic control set showed a 3-fold increase in Y359Stop homozygous rates (p = 0.054). Overall in our cohort, the homozygous genotype group was associated with increased risk of FPC (odds ratio 5.4; 95% CI 1.6 to 17.6; p \u3c 0.01). Sex, age at diagnosis, and history of tobacco use were not found to be significantly associated with FPC. CONCLUSIONS: Our preliminary data suggest a strong association between the IDO2 inactivating Y359Stop SNP and an increased risk of FPC when compared with the control group. Future studies will evaluate the value of IDO2 genotyping as a prognostic, early detection marker for pancreatic ductal adenocarcinoma and a predictive marker for novel immune checkpoint therapies

    CRISPR Knockout of the HuR Gene Causes a Xenograft Lethal Phenotype.

    Get PDF
    Pancreatic ductal adenocarcinoma (PDA) is the third leading cause of cancer-related deaths in the United States, whereas colorectal cancer is the third most common cancer. The RNA-binding protein HuR (ELAVL1) supports a pro-oncogenic network in gastrointestinal (GI) cancer cells through enhanced HuR expression. Using a publically available database, HuR expression levels were determined to be increased in primary PDA and colorectal cancer tumor cohorts as compared with normal pancreas and colon tissues, respectively. CRISPR/Cas9 technology was successfully used to delete the HuR gene in both PDA (MIA PaCa-2 and Hs 766T) and colorectal cancer (HCT116) cell lines. HuR deficiency has a mild phenotype

    The high-precision, charge-dependent Bonn nucleon-nucleon potential (CD-Bonn)

    Full text link
    We present a charge-dependent nucleon-nucleon (NN) potential that fits the world proton-proton data below 350 MeV available in the year of 2000 with a chi^2 per datum of 1.01 for 2932 data and the corresponding neutron-proton data with chi^2/datum = 1.02 for 3058 data. This reproduction of the NN data is more accurate than by any phase-shift analysis and any other NN potential. The charge-dependence of the present potential (that has been dubbed `CD-Bonn') is based upon the predictions by the Bonn Full Model for charge-symmetry and charge-independence breaking in all partial waves with J <= 4. The potential is represented in terms of the covariant Feynman amplitudes for one-boson exchange which are nonlocal. Therefore, the off-shell behavior of the CD-Bonn potential differs in a characteristic and well-founded way from commonly used local potentials and leads to larger binding energies in nuclear few- and many-body systems, where underbinding is a persistent problem.Comment: 69 pages (RevTex) including 20 tables and 9 figures (ps files

    Gravitational Waves From Known Pulsars: Results From The Initial Detector Era

    Get PDF
    We present the results of searches for gravitational waves from a large selection of pulsars using data from the most recent science runs (S6, VSR2 and VSR4) of the initial generation of interferometric gravitational wave detectors LIGO (Laser Interferometric Gravitational-wave Observatory) and Virgo. We do not see evidence for gravitational wave emission from any of the targeted sources but produce upper limits on the emission amplitude. We highlight the results from seven young pulsars with large spin-down luminosities. We reach within a factor of five of the canonical spin-down limit for all seven of these, whilst for the Crab and Vela pulsars we further surpass their spin-down limits. We present new or updated limits for 172 other pulsars (including both young and millisecond pulsars). Now that the detectors are undergoing major upgrades, and, for completeness, we bring together all of the most up-to-date results from all pulsars searched for during the operations of the first-generation LIGO, Virgo and GEO600 detectors. This gives a total of 195 pulsars including the most recent results described in this paper.United States National Science FoundationScience and Technology Facilities Council of the United KingdomMax-Planck-SocietyState of Niedersachsen/GermanyAustralian Research CouncilInternational Science Linkages program of the Commonwealth of AustraliaCouncil of Scientific and Industrial Research of IndiaIstituto Nazionale di Fisica Nucleare of ItalySpanish Ministerio de Economia y CompetitividadConselleria d'Economia Hisenda i Innovacio of the Govern de les Illes BalearsNetherlands Organisation for Scientific ResearchPolish Ministry of Science and Higher EducationFOCUS Programme of Foundation for Polish ScienceRoyal SocietyScottish Funding CouncilScottish Universities Physics AllianceNational Aeronautics and Space AdministrationOTKA of HungaryLyon Institute of Origins (LIO)National Research Foundation of KoreaIndustry CanadaProvince of Ontario through the Ministry of Economic Development and InnovationNational Science and Engineering Research Council CanadaCarnegie TrustLeverhulme TrustDavid and Lucile Packard FoundationResearch CorporationAlfred P. Sloan FoundationAstronom

    A step towards personalizing next line therapy for resected pancreatic and related cancer patients: A single institution\u27s experience

    Get PDF
    Background: There is a lack of precision medicine in pancreatic ductal adenocarcinoma (PDA) and related cancers, and outcomes for patients with this diagnosis remain poor despite decades of research investigating this disease. Therefore, it is necessary to explore novel therapeutic options for these patients who may benefit from personalized therapies. Objective: Molecular profiling of hepatopancreaticobiliary malignancies at our institution, including but not limited to PDA, was initiated to assess the feasibility of incorporating molecular profiling results into patient oncological therapy planning. Methods: All eligible patients from Thomas Jefferson University (TJU) with hepatopancreaticobiliary tumors including PDA, who agreed to molecular testing profiling, were prospectively enrolled in a registry study from December 2014 to September 2017 and their tumor samples were tested to identify molecular markers that can be used to guide therapy options in the future. Next generation sequencing (NGS) and protein expression in tumor samples were tested at CLIA-certified laboratories. Prospective clinicopathologic data were extracted from medical records and compiled in a de-identified fashion. Results: Seventy eight (78) patients were enrolled in the study, which included 65/78 patients with PDA (local and metastatic) and out of that subset, 52/65 patients had surgically resected PDA. Therapy recommendations were generated based on molecular and clinicopathologic data for all enrolled patients. NGS uncovered actionable alterations in 25/52 surgically resected PDAs (48%) which could be used to guide therapy options in the future. High expression of three proteins, TS (p = 0.005), ERCC1 (p = 0.001), and PD-1 (p = 0.04), was associated with reduced recurrence-free survival (RFS), while TP53 mutations were correlated with longer RFS (p = 0.01). Conclusions: The goal of this study was to implement a stepwise strategy to identify and profile resected PDAs at our institution. Consistent with previous studies, approximately half of patients with resected PDA harbor actionable mutations with possible targeted therapeutic implications. Ongoing studies will determine the clinical value of identifying these mutations in patients with resected PDA

    The case for studying other planetary magnetospheres and atmospheres in Heliophysics

    Full text link
    Heliophysics is the field that "studies the nature of the Sun, and how it influences the very nature of space - and, in turn, the atmospheres of planetary bodies and the technology that exists there." However, NASA's Heliophysics Division tends to limit study of planetary magnetospheres and atmospheres to only those of Earth. This leaves exploration and understanding of space plasma physics at other worlds to the purview of the Planetary Science and Astrophysics Divisions. This is detrimental to the study of space plasma physics in general since, although some cross-divisional funding opportunities do exist, vital elements of space plasma physics can be best addressed by extending the expertise of Heliophysics scientists to other stellar and planetary magnetospheres. However, the diverse worlds within the solar system provide crucial environmental conditions that are not replicated at Earth but can provide deep insight into fundamental space plasma physics processes. Studying planetary systems with Heliophysics objectives, comprehensive instrumentation, and new grant opportunities for analysis and modeling would enable a novel understanding of fundamental and universal processes of space plasma physics. As such, the Heliophysics community should be prepared to consider, prioritize, and fund dedicated Heliophysics efforts to planetary targets to specifically study space physics and aeronomy objectives

    First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data

    Get PDF
    Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signalto- noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have been developed, allowing a fully coherent search for gravitational waves from known pulsars over a fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of 11 pulsars using data from Advanced LIGO’s first observing run. Although we have found several initial outliers, further studies show no significant evidence for the presence of a gravitational wave signal. Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for the first time. For an additional 3 targets, the median upper limit across the search bands is below the spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried out so far

    An Enriched European Eel Transcriptome Sheds Light upon Host-Pathogen Interactions with Vibrio vulnificus

    Get PDF
    Infectious diseases are one of the principal bottlenecks for the European eel recovery. The aim of this study was to develop a new molecular tool to be used in host-pathogen interaction experiments in the eel. To this end, we first stimulated adult eels with different pathogen-associated molecular patterns (PAMPs), extracted RNA from the immune-related tissues and sequenced the transcriptome. We obtained more than 2 x 10(6) reads that were assembled and annotated into 45,067 new descriptions with a notable representation of novel transcripts related with pathogen recognition, signal transduction and the immune response. Then, we designed a DNA-microarray that was used to analyze the early immune response against Vibrio vulnificus, a septicemic pathogen that uses the gills as the portal of entry into the blood, as well as the role of the main toxin of this species (RtxA13) on this early interaction. The gill transcriptomic profiles obtained after bath infecting eels with the wild type strain or with a mutant deficient in rtxA13 were analyzed and compared. Results demonstrate that eels react rapidly and locally against the pathogen and that this immune-response is rtxA13-dependent as transcripts related with cell destruction were highly up-regulated only in the gills from eels infected with the wild-type strain. Furthermore, significant differences in the immune response against the wild type and the mutant strain also suggest that host survival after V. vulnificus infection could depend on an efficient local phagocytic activity. Finally, we also found evidence of the presence of an interbranchial lymphoid tissue in European eel gills although further experiments will be necessary to identify such tissue
    corecore